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Introduction to Verilog

|1. | ntroduction |

Verilog HDL is one of the two most common Hardware Description Languages (HDL) used by integrated circuit
(IC) designers. The other oneis VHDL.
HDL's allows the design to be simulated earlier in the design cycle in order to correct errors or experiment with
different architectures. Designs described in HDL are technology-independent, easy to design and debug, and are
usually more readabl e than schematics, particularly for large circuits.

Verilog can be used to describe designs at four levels of abstraction:
(i) Algorithmic level (much like c code with if, case and loop statements).
(i) Register transfer level (RTL uses registers connected by Boolean equations).
(iii) Gate leve (interconnected AND, NOR etc.).
(iv) Switch level (the switches are MOS transistors inside gates).
The language a so defines constructs that can be used to control the input and output of simulation.

More recently Verilog is used as an input for synthesis programs which will generate a gate-level description (a
netlist) for the circuit. Some Verilog constructs are not synthesizable. Also the way the code is written will greatly
effect the size and speed of the synthesized circuit. Most readers will want to synthesize their circuits, so nonsynthe-
sizable constructs should be used only for test benches. These are program modul es used to generate I/0O needed to
simulate the rest of the design. The words " not synthesizable” will be used for examples and constructs as needed that
do not synthesize.

There are two types of code in most HDLS:
Structural, which isaverbal wiring diagram without storage.

assigna=b & c|d; *“"isaOR*/

assignd=e& (~c);

Here the order of the statements does not matter. Changing e will change a
Procedural which isused for circuits with storage, or as a convenient way to write conditiona logic.

always @(posedge clk) // Execute the next statement on every rising clock edge.

count <= count+1;
Procedural code iswritten like ¢ code and assumes every assignment is stored in memory until over written. For syn-
thesis, with flip-flop storage, this type of thinking generates too much storage. However people prefer procedural
code because it is usually much easier to write, for example, if and case statements are only alowed in procedural
code. As aresult, the synthesizers have been constructed which can recognize certain styles of procedural code as
actually combinationa . They generate aflip-flop only for left-hand variables which truly need to be stored. However
if you stray from this style, beware. Y our synthesiswill start to fill with superfluous latches.

This manual introduces the basic and most common Verilog behavioral and gate-level modelling constructs, as
well as Verilog compiler directives and system functions. Full description of the language can be found in Cadence
Verilog-XL Reference Manual and Synopsys HDL Compiler for Verilog Reference Manual. The latter emphasizes
only those Verilog constructs that are supported for synthesis by the Synopsys Design Compiler synthesis tool.

In all examples, Verilog keyword are shown in boldface. Comments are shown initalics.
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Introduction to Verilog

|2. Lexical Tokens |

Verilog source text files consists of the following lexica tokens:

2.1. White Space

White spaces separate words and can contain spaces, tabs, new-lines and form feeds. Thus a statement can extend
over multiple lines without special continuation characters.

2.2. Comments
Comments can be specified in two ways (exactly the same way asin C/C++):

- Begin the comment with double slashes (/). All text between these characters and the end of the line will be
ignored by the Verilog compiler.

- Enclose comments between the characters /* and */. Using this method allows you to continue comments on
more than oneline. Thisisgood for “commenting out” many lines code, or for very brief in-line comments.

Example2.1

a=c+d; /I thisis a simple comment
/* however, this comment continues on more
than oneline*/
assign y = temp_reg;
assign x=ABC /* plusitscompliment*/ + ABC_

2.3. Numbers

Number storage is defined as a number of bits, but values can be specified in binary, octal, decimal or hexadecimal
(See Sect. 6.1. for details on number notation).

Examples are 3'b001, a 3-bit number, 5 d30, (=5'b11110), and 16'h5ED4, (=16’ d24276)

2.4. |dentifiers

Identifiers are user-defined words for variables, function names, module names, block names and instance names.
Identifiers begin with aletter or underscore (Not with anumber or $) and can include any number of letters, digitsand
underscores. Identifiersin Verilog are case-sensitive.

Syntax Example2 .2

allowed symbols adder /1 use underscor es to make your
ABCDE . .. abcdef. . . 1234567890 _$ by 8 shifter /I identifiers more meaningful

not allowed: anything else especially _ABC_  /*isnotthesameas*/ _abc_

-&H#@

Read_ /I is often used for NOT Read

2.5. Operators

Operators are one, two and sometimes three characters used to perform operations on variables.
Examplesinclude >, +, ~, &, !=. Operatorsare described in detail in “ Operators’ on p. 6.

2.6. Verilog Keywords

These are words that have specia meaning in Verilog. Some examples are assign, case, while, wire, reg, and, or,
nand, and module. They should not be used as identifiers. Refer to Cadence Verilog-XL Reference Manual for a
complete listing of Verilog keywords. A number of them will be introduced in this manual. Verilog keywords also
includes Compiler Directives (Sect. 15. ) and System Tasks and Functions (Sect. 16. ).
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Introduction to Verilog

|3. Gate-Level Modelling l

Primitive logic gates are part of the Verilog language. Two properties can be specified, drive_strength and delay.
Drive_strength specifies the strength at the gate outputs. The strongest output is adirect connection to a source, next
comes a connection through a conducting transistor, then aresistive pull-up/down. The drive strength is usually not
specified, in which case the strengths defaults to strongl and strong0. Refer to Cadence Verilog-XL Reference Man-
ual for more details on strengths.

Delays: If no delay is specified, then the gate has no propagation delay; if two delays are specified, the first represent
therise delay, the second the fall delay; if only one delay is specified, then rise and fall are equal. Delays are ignored
in synthesis. This method of specifying delay is a special case of “ Parameterized Modules’ on page 11. The parame-
tersfor the primitive gates have been predefined as delays.

3.1. Basic Gates

These implement the basic logic gates. They have one output and one or more inputs. In the gate instantiation syntax
shown below, GATE stands for one of the keywords and, nand, or, nor, xor, xnor.

Syntax Example 3.1
GATE (drive_strength) # (delays)
instance_namel(output, input_1, andcl(o,a b, c,d); //4-input AND called c1 and
input_2,..., input_N), c2(p, fq); /I a2-input AND called c2.

instance_name2(outp,inl, in2,..., inN); or #(4,3)ig(o,a b); /* or gatecalled ig (instance name);

Delaysis risetime= 4, fall time= 3 */
#(rise, fall) or xor #(5) xorl (a b, c); //a= b XOR c after 5time units
#rise and fall or xor (pulll, strong0) #5 (a,b,c); /* Identical gate with pull-up
#(rise_and_fall) strength pull1 and pull-down strength strong0. */

3.2. buf, not Gates

These implement buffers and inverters, respectively. They have one input and one or more outputs. In the gate instan-
tiation syntax shown below, GATE stands for either the keyword buf or not

Syntax Example 3.2

not #(5) not_1 (a,c); // a= NOT c after 5time units
bufcl (o, p, q,r,in); // 5-output and 2-output buffers

c2(p, f o),

GATE (drive_strength) # (delays)
instance_namel(output_1, output_2,

..., output_n, input),
instance_name2(outl, out2, ..., outN, in);

3.3. Three-Sate Gates; bufifl, bufifO, notif1, notifO
These implement 3-state buffers and inverters. They propagate z (3-state or high-impedance) if their control signal is
deasserted. These can have three delay specifications: arisetime, afall time, and atime to go into 3-state.
bufifo notifo Example 3.3
A BUS=2 bufifo #(5) not_1 (BUS, A, CTRL); /* BUS= A

5 time units after CTRL goes low. */
notifl #(3,4,6) c1 (bus, & b, cntr);  /* bus goes tri-state
bufifl notifl 6 time units after ctrl goes low. */

CTRL=1
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Introduction to Verilog

|4. Data Types |

4.1. Value Set

Verilog consists of only four basic values. Almost al Verilog data types store all these values:
0 (logic zero, or false condition)
1 (logic one, or true condition)
X (unknown logic value) x and z have limited use for synthesis.
z (high impedance stete)

4.2. Wire

A wirerepresents aphysical wirein acircuit and is used to connect gates or modules. The value of awire can be
read, but not assigned to, in afunction or block. See “Functions” on p. 19, and “Procedures: Always and Initial
Blocks” on p. 18. A wiredoes not store its value but must be driven by a continuous assignment statement or by con-
necting it to the output of a gate or module. Other specific types of wiresinclude:

wand (wired-AND);:the value of awand depend on logical AND of all the drivers connected to it.

wor (wired-OR);: the value of awor depend on logical OR of all the drivers connected to it.

tri (three-state;): all drivers connected to atri must be z, except one (which determines the value of the tri).

Syntax Example4 .1
wire [msb:Isb] wire_variable list; wirec Il simple wire
wand d;

wand [msb:Isb] wand_variable list;
wor [msh:lsb] wor_variable list;
tri [msb:lsb] tri_variable list;

assignd =g /l value of d is the logical AND of
assignd=b; /laand b
wire[9:0] A; /I a cable (vector) of 10 wires.

4.3. Rey

Declare typereg for all data objects on the left hand side of expressionsin inital and always procedures, or func-
tions. See “Procedural Assignments” on page 12. A reg isthe data type that must be used for |atches, flip-flops and
memorys. However it often synthesizes into leads rather than storage. In multi-bit registers, datais stored as unsigned
numbers and no sign extension is done for what the user might have thought were two’ s complement numbers.

Syntax Example 4 .2

rega /I single 1-bit register variable
reg [7:0] tom; // an 8-hit vector; a bank of 8 registers.
reg[5:0] b,c;  //two 6-bit variables

reg [msh:lsb] reg_variable list;

4.4. |nput, Output, I nout

These keywords declare input, output and bidirectional ports of amodule or task. Input and inout ports are of type
wire. An output port can be configured to be of type wire, reg, wand, wor or tri. The defaultiswire.

Syntax Example4 .3
, , , module sample(b, €, ¢, @); //See” Module Instantiations’ on p. 10
input [msb:Isb] input_port_list; input & /I An input which defaults to wire.
output [msb:Isb] output_port_list; output b, € // Two outputs which default to wire
inout [msb:Isb] inout_port_list; output [1:0] ¢; /* Atwo-it output. One must declare its

type in a separate statement. */
reg[1:0] c; /I The above c port is declared as reg.
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4.5. Integer

Integers are general -purpose variables. For synthesois they are used mainly loops-indicies, parameters, and con-
stants. See"Parameter” on p. 5. They are of implicitly of type reg. However they store data as signed numbers
whereas explicitly declared reg types store them as unsigned. | they hold numberswhich are not defined at compile
time, their size will default to 32-bits. If they hold constants, the synthesizer adjusts them to the minimum width
needed at compilation.

Syntax Example4 .4

integer & /I single 32-bit integer
assigh b=63; /I 63 defaultsto a 7-bit variable.

integer integer_variable list;
.. integer_constant ... ;

4.6. SupplyO, Supplyl
Supply0 and supply1 define wires tied to logic O (ground) and logic 1 (power), respectively.

Syntax Example4 .5
supply0 logic_O_wires; supply0 my_gnd;  // equivalent to a wire assigned O
supplyllogic_1_wires; supplyl a, b;

47. Time

Timeis a 64-bit quantity that can be used in conjunction with the $time system task to hold simulation time. Timeis
not supported for synthesis and hence is used only for simulation purposes.

Syntax Example 4 .6

timetime variable list; timec;

c=$time; /I ¢ = current simulation time

4.8. Parameter

Parameters allows constants like word length to be defined symbolically in one place. Thismakes it easy to change
the word length later, by change only the parameter. See also “Parameterized Modules’ on page 11 . An alternative
way to do the same thing is to use macro substitution, see “Macro Definitions’ on page 26.

Syntax Example 4 .7

parameter add =2'b00, sub = 3'b111;
parameter n = 4;
parameter [3:0] st4 =4'b1010;

parameter par_1=value,
par_ 2 =value, ....;
parameter [range] parm_3 = value

reg [n-1:0] harry; /* A 4-bit register whose length is
set by parameter n above. */

always @(x)
y ={{(add - sub){x}}; // Thereplication operator Sect. 5.8.
if (x) begin
state = st4[1]; else state = st4[2];
end
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Introduction to Verilog

|5. Operators |

5.1. Arithmetic Operators

These perform arithmetic operations. The + and - can be used as either unary (-z) or binary (x-y) operators.

Operators Example5 .1
iti parameter n = 4;
+ (addition) _ .
- (subtraction) ;9_9[3-0] ac f, g, count;
inlicati =a+c;
* (multiplication) ~ _
g=c-m

[ (division)

% (modulus) /ICan count O thru 15.

count = (count +1)%16;

5.2. Relational Operators

Relational operators compare two operands and return asingle bit 1or 0. These operators synthesize into comparators.
Wire and reg variables are positive Thus (-3'b001) == 3'b111 and (-3d001)>3d110. However for integers-1< 6.

Operators Example 5 .2 quivalent Statement
if(x==y) e=1,
< (lessthan) else e=0: e= (x ==y);

<= (lessthan or equal to)

> (greater than) /I Comparein 2's compliment; a>b

>= (greater than or equal to) reg[3:0] ab;
== (equal to) if (a[3]==Db[3]) a[2:0] > b[2:0];
1= (not equal to) | else b[3];

5.3. Bit-wise Operators
Bit-wise operators do a hit-by-bit comparison between two operands. However see"Reduction Operators’ onp. 7.

Operators Example5 .3
a a0
~  (bitwise NOT) moduleand2 (a, b, ¢); 2| PO )
& (bitwise AND) input [1:0] & b;
| (bitwise OR) output [1:0] c; a(1)
n (bitwise XOR) assignc=a& b; b b(1) >—
~"or A”“(b|tW|SEXNOR) endmodule +

5.4. Logical Operators

Logical operatorsreturn asinglebit 1 or 0. They are the same as bit-wise operators only for single bit operands. They
can work on expressions, integers or groups of bits, and treat all valuesthat are nonzeroas“1”. Logica operatorsare
typically used in conditiona (if ... else) statements since they work with expressions.

Operators Example5 4
. wire[7:0] x, Y, z; /I X, y and z are multibit variables.
I (logica NOT) rega
& & (logical AND) o
I (logical OR) if (x==y)&& (2)) a=1; // a= 1if xequalsy, and zis nonzero.
else a=Ix; /l a=0if x is anything but zero.
Oct/1/03 6 Peter M. Nyasulu and JKnight



Introduction to Verilog

5.5. Reduction Operators
Reduction operators operate on all the bits of an operand vector and return asingle-bit value. These are the unary (one
argument) form of the bit-wise operators above.

Operators Example5 .5
. module chk_zero (g, 2);
& (reduction AND) input [2.0]_3; (@2 z
| (reduction OR) output - o=
~&  (reduction NAND) . ' .
. assign z = ~| & // Reduction NOR
~| (reduction NOR) endm?)dule |

A (reduction XOR)
~" or “~(reduction XNOR)

5.6. Shift Operators

Shift operators shift the first operand by the number of bits specified by the second operand. Vacated positions are
filled with zeros for both left and right shifts (There is no sign extension).

Operators Example5 .6

assignc=a<<2; [* c= ashifted left 2 hits;
vacant positions arefilled with 0's */

<< (shift l€ft)
>> (shift right)

5.7. Concatenation Oper ator
The concatenation operator combines two or more operands to form alarger vector.

Operators Example5.7
. wire[1:0] a, b; wire[2:0] x; wire[3;0]y, Z;
{ }(concatenation) assign x ={1'b0, a; //x[2]=0, x[1=a[1], x[0]=a[0]

assigny ={a b}; /*y[3]=a[1], y[2]=a[0], y[1]=Db[1],
y[0]=b[0] */

assign {cout, y} =x + Z; // Concatenation of a result

5.8. Replication Operator

The replication operator makes multiple copies of an item.

Operators Example5 .8

. o . wire[1:0] a b; wire[4:0] x;

{n{item}} (nfold replication of an item) assign x ={2{1'b0}, a}; // Equivalentto x = {0,0,a}
assigny ={2{a}, 3{b}}; //Equivalentto y= {a,ab,b}

For synthesis, Synopsis did not like azero replication. For example:-
parameter n=5, m=5;
assign x={(n-m){a}}
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5.9. Conditional Operator: “?"

Conditional operator islike thosein C/C++. They evaluate one of the two expressions based on a condition. It will
synthesize to a multiplexer (MUX).

Operators Example5 .9 x|y
. assigna=(g) ?x:V; 9 *
(cond) ? (result if cond true): assgna=(inc==2)?a+l:al;

(result if cond false)

/*if(inc),a=a+1, elsca=al*/

5.10. Operator Precedence

Table 6.1 shows the precedence of operatorsfrom highest to lowest. Operators on the same level evaluate from | eft to
right. It is strongly recommended to use parentheses to define order of precedence and improve the readability of
your code.

Operator Name

[1] bit-select or part-select
() parenthesis
I, ~ logical and bit-wise NOT

&, |, ~&, ~|,~, ~" "~ | reduction AND, OR, NAND, NOR, XOR, XNOR;
If X=3'B101 and Y=3'B110, then X&Y=3'B100, XY =3'B011,

+, - unary (sign) plus, minus;, +17, -7

{1} concatenation; {3'B101, 3'B110} = 6'B101110;

{1 replication; {3{3'B110}} = 9'B110110110

* 1, % multiply, divide, modulus; /and % not be supported for synthesis
+, - binary add, subtract.

<<, >> shift left, shift right; X<<2ismultiply by 4

<, <=, >, >= comparisons. Reg and wire variables are taken as positive numbers.

== 1= logical equality, logical inequality
===l1== case equality, case inequality; not synthesizable

& bit-wise AND; AND together all the bitsin aword

NN N~ bit-wise XOR, bit-wise XNOR

| bit-wise OR; AND together al the bitsin aword

&&, logical AND. Treat all variables as False (zero) or True (nonzero).

logical OR. (7]|0) is (T|IF) =1, (2||-3) is(T||T) =1,
(3&&0) is(T&&F) =0.

?: conditiona. x=(cond)?T : F;

Table5.1: Verilog Operator s Precedence

Oct/1/03 8 Peter M. Nyasulu and JKnight



Introduction to Verilog

|6. Operands |

6.1. Literals

Literals are constant-valued operands that can be used in Verilog expressions. The two common Verilog literals are:
(a) String: A string literal is a one-dimensional array of characters enclosed in double quotes (* “).

(b) Numeric: constant numbers specified in binary, octal, decimal or hexadecimal.

Number Syntax Example 6.1
n'Fddd..., where “timeis’// string literal
n - integer representing number of bits 267 // 32-bit decimal number
F - one of four possible base formats: 2'b01 // 2-bit binary
b (binary), o (octal), d (decimal), 20" hB36F// 20-bit hexadecimal number
h (hexadecimal). Default is d. ‘062 // 32-bit octal number
dddd - legal digits for the base format

6.2. Wires, Regs, and Parameters
Wires, regs and parameters can also be used as operands in Verilog expressions. These data objects are described in
more detail in Sect. 4. .

6.3. Bit-Sdects “x[3]” and Part-Selects “x[5:3]”

Bit-selects and part-selects are a selection of asingle bit and a group of bits, respectively, from awire, reg or parame-
ter vector using square brackets “[ ]”. Bit-selects and part-selects can be used as operands in expressions in much the
same way that their parent data objects are used.

Syntax Example 6 .2
variable_name[index] ;eg gg} Z.b;
variable_name[msb:Isb] rg e

c=4a7] & b[7]; /I bit-selects
Is=a[7:4] + b[3:0]; /I part-selects

6.4. Function Calls

The return value of afunction can be used directly in an expression without first assigning it to a register or wire var-
iable. Simply place the function call as one of the operands. Make sure you know the bit width of the return value of
the function call. Construction of functionsis described in “ Functions’ on page 19

Syntax Example 6.3

assign a=b & ¢ & chk_bc(c, b);// chk_bc is a function
.. /* Definition of the function */
function chk_bc;// function definition
input c,b;
chk_bc = b"c;
endfunction

function_name (argument_list)
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7. Modules

7.1. Module Declaration

A moduleis the principal design entity in Verilog. The first line of a module declaration specifies the name and port
list (arguments). The next few lines specifies the i/o type (input, output or inout, see Sect. 4.4. ) and width of each
port. The default port width is 1 bit.

Then the port variables must be declared wire, wand.,. . ., reg (See Sect. 4. ). The defaultiswire. Typically inputs are
wir e since their dataislatched outside the module. Outputs are typereg if their signals were stored inside an always
or initial block (See Sect. 10. ).

Syntax Example 7.1 add
module module_name (port_list); moduleadd_sub(add, in1, in2, oot); in1
input [msb:lsb] input_port_list; input add; /I defaults to wire oot
. ’ 8
output [msbilsb] output_port_list; input [7:0] in1, in2; wireinl, in2; o add—wb#
inout [msh:lsh] inout_port_list; output [7:0] oot; reg oot;
... Statements ... ... Statements.... 8
endmodule endmodule

7.2. Continuous Assignment

The continuous assignment is used to assign a value onto awire in amodule. It is the normal assignment outside of
always or initial blocks (See Sect. 10. ). Continuous assignment is done with an explicit assign statement or by
assigning a value to awire during its declaration. Note that continuous assignment statements are concurrent and are
continuously executed during simulation. The order of assign statements does not matter. Any change in any of the
right-hand-side inputs will immediately change a left-hand-side output.

Syntax Example 7 .2
wire[1:0] a=2'b01; // assigned on declaration
assignb=c&d; /I using assign statement

assignd=x1y; ] b
I* The order of the assign statements ;DL )

does not matter. */

wirewire variable = value;
assign wire_variable = expression;

7.3. Module I nstantiations

Modul e declarations are templates from which one creates actual objects (instantiations). Modules are instantiated
inside other modules, and each instantiation creates a unique object from the template. The exception is the top-level
module which isits own instantiation.

The instantiated modul€e’ s ports must be matched to those defined in the template. This is specified:
(i) by name, using adot(.) “ .template_port_name (name_of wire_connected to_port)”.
or(ii) by position, placing the portsin exactly the same positions in the port lists of both the template and the instance.
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Syntax for Instantiation Example 7 .3
module_name
instance_name 1 (port_connection_list), |// MODULE DEFINITION
instance_name_2 (port_connection_list),
...... module and4(a, b, c);
instance_name_n (port_connection_list); input [3:0] &, b;
output [3:0] c;
assignc=a& b;
endmodule

// MODULE INSTANTIATIONS

wire[3:0] inl, in2;
wire[3:0] o1, 02;

/* Clisan instance of module and4
C1 ports referenced by position */
and4 Cl1(inl,in2, ol);

/* C2isanother instance of and4.

C2 ports are referenced to the

declaration by name. */
and4 C2(.c(02), .a(inl), .b(in2));

Modules may not beinstantiated inside procedural blocks. See “ Procedures: Always and Initial Blocks” on page 18.

7.4. Parameterized M odules

Y ou can build modules that are parameterized and specify the value of the parameter at each instantiation of the mod-
ule. See “Parameter” on page 5 for the use of parameters inside a module. Primitive gates have parameters which

have been predefined as delays. See “Basic Gates” on page 3.

Syntax Example 7 .4

/ MODULE DEFINITION
module_name #(1st_parameter_values, module shift_n (it, ot);

2nd_parm_value, ...) input [7:0] it

instance_name(port_connection_list); parameter n=2;*
assign ot = (it << n);

endmodule

/I used in module test_shift.
output [7:0] ot;

/I default value of nis 2

/I it shifted left ntimes

PARAMETERIZED INSTANTIATIONS
wire[7:0] inl, otl, ot2, ot3;

shft2(inl, otl),  // shift by 2; default
#(3) shft3(inl, ot2); // shift by 3; override parameter 2.
#(5) shfts(inl, ot3); // shift by 5; override parameter 2.

Synthesis does not support the defparam keyword which is an alternate way of changing parameters. Here the

instance name is associated with a parameter in a defpar am statement.

Syntax | [/ PARAMETERIZED INSTANTIATIONS
defparm instance_name.parameter wire[7:0] inl, otl, ot2, ot3;
= parameter_value; defparm shft3.n=3, shift5.n=5;
shift_ n shft2(inl, otl),  // shift by 2; default
module_name  instance_name shift_n shft3(inl, ot2); // shift by 3; override parameter 2.
(port_connection_list); shift_n shft5(inl, ot3); // shift by 5; override parameter 2.

A third way isto use macros for the same purpose as parameters. See “Macro Definitions’ on page 26
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c

|8. Behavioral Modeling I

Verilog hasfour levels of modelling:

1) The switch level which includes MOS transistors modelled as switches. Thisis not discussed here.

2) The gate level. See “Gate-Level Modelling” on p. 3

3) The Data-Flow level. See Example 7 .4 on page 11

4) The Behavioral or procedural level described below.

Verilog procedural statements are used to model a design at a higher level of abstraction than the other levels. They
provide powerful ways of doing complex designs. However small changes n coding methods can cause large changes
in the hardware generated. Procedural statements can only be used in procedures. V erilog procedures are described
later in “ Procedures: Alwaysand Initial Blocks’ on page 18,“ Functions’ on page 19, and “Tasks, Not Synthesizable”
on page 21.

8.1. Procedural Assignments

Procedural assignments are assignment statements used within Verilog procedures (always and initial blocks). Only
reg variables and integers (and their bit/part-selects and concatenations) can be placed | eft of the “=" in procedures.
The right hand side of the assignment is an expression which may use any of the operator types described in Sect. 5.

8.2. Delay in Assignment (not for synthesis)

In adelayed assignment At time units pass before the statement is executed and the left-hand assignment is made.
With intra-assignment delay, theright side is evaluated immediately but there isa delay of At beforetheresultis
place in the left hand assignment. If another procedure changes aright-hand side signal during At, it does not effect
the output. Delays are not supported by synthesistools.

Syntax for Procedural Assignment Example 8.1
variable = expression .
Delayed assignment reg [6:0] sum; ~ regh, ziltch;

sum[7] = b[7] ~ c[7]; /] execute now.

ziltch = #15 ckz& h; /* ckz& a evaluated now; zltch changed
after 15 time units. */

#10 hat = b&c; /* 10 units after zltch changes, b&cis

evaluated and hat changes. */

#At variable = expression;
I ntra-assignment delay
variable = #At expression;

8.3. Blocking Assignments
Procedura (blocking) assignments (=) are done sequentially in the order the statements are written. A second
assignment is not started until the preceding one is complete. See also Sect. 9.4.

Syntax Example 8 .2. For simulation
Blocking initial
variable = expression; begin
variable = #At expression; a=1; b=2; c=3;
grab inputs now, deliver ans. #5 a=b+c; /l wait for 5 units, and execute a= b + ¢ =5.
later. d=g /[ Time continues from last line, d=5= b+c at t=5.

#At variable = expression;
ater ]
aJway§ @( posedge clk) _ L1 | —bc1
begin
Z=Y; Y=X; /I shift register
y=x; z=y; llparalle ff. Xolio H Hip =
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8.4. Nonblocking (RTL) Assignments (see below for synthesis)

RTL (nonblocking) assignments (<=), which follow each other in the code, are started in parallel. The right hand
side of nonblocking assignments is evaluated starting from the completion of the last blocking assignment or if none,
the start of the procedure. The transfer to the left hand side is made according to the delays. An intra-assignment
delay in anon-blocking statement will not delay the start of any subsequent statement blocking or non-blocking.
However anormal delays will are cummulative and will delay the output.

For synthesis

* One must not mix “<=" or “=" in the same procedure.
* “<=" best mimics what physical flip-flops do; useit for “aways @ (posedge clk ..) type procedures.
e “=" pest corresponds to what c/c++ code would do; useit for combinational procedures.
Syntax Example 8 .3. For simulation
Non-Blocking initial

variable <= expression; begin

variable <= #At expression; #3 b<=g [* grab aat t=0 Deliver b at t=3.

#At variable <= expression; #6 x<=b+c; //grabbtc att=0, waitand assignx at t=6.

x is unaffected by b’s change. */

Example 8 .4. For synthesis X v Z
always @( posedge clk) —1D 1D —
begin —pC| —p<t

Z<=Y; Y<=X; ift regi
; /1 shift register X oY o1

y<=x; z<=y; //also a shift register.

>C1 >C1

Example 8 .3. Use <= to transform a variable into itself.
reg G[7:0];
always @( posedge clk)

G <={ G[6:0], G[7]}; // End around rotate 8-bit register.

The following example shows interactions between blocking and non-blocking for simulation. Do not mix the two
typesin one procedure for synthesis.

Syntax Example 8 .4 for simulation only
initial begin
Non-BIocking a=1; b:2; c=3; x=4;
variable <= expression; #5 a=b+c;  //waitfor 5units, then grab b,c and execute a= 2+ 3.
variable <= #At expression; d=ga I/ Time continues from last line, d=5 = b+c at t=5.
#At variable <=expression; X <= #6 b+ c;// grabb+c nowat t=5, don't stop, make x=5 at t=11.

b<=#2 a /* grabaatt=5 (end of last blocking statement).
Deliver b=5at t=7. previous x is unaffected by b change. */
y<=#1 b+c;// grab b+c att=5, don't stop, make x=5 at t=6.
#3 z = b+c; //grabb+c att=8 (#5+#3), make z=5 att=8.
W <=X /l make w=4 at t=8. Sarting at last blocking assignm.

Blocking
variable = expression;
variable = #At expression;
#At variable = expression;

8.5. begin ... end

begin ... end block statements are used to group several statements for use where one statement is syntactically
allowed. Such places include functions, alwaysand initial blocks, if, case and for statements. Blocks can optionally
be named. See “disable” on page 15) and can include register, integer and parameter declarations.
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Syntax Example 8 .5
begin : block_name function trivial_one; // The block name is “ trivial_one.”
reg [msb:Isb] reg_variable list; input a;
integer [msbilsb] integer_list; begin: adder_blk; // block named adder, with
parameter [msb:Isb] parameter_list; integer i; // local integer i
... Statements ... ... Statements ...
end end

8.6. for Loops
Similar to for loopsin C/C++, they are used to repeatedly execute a statement or block of statements. If the loop con-
tains only one statement, the begin ... end statements may be omitted.

Syntax Example 8 .6
for (count = valuel, for =0;j<=7,j=j+1)
count </<=/>/>= value2; begin
cqunt = count +/- step) cjl =4dj1 & b[j];
begin d[j] = a[j] | bfjl;
... Statements ... end
end

8.7. while L oops

The while loop repeatedly executes a statement or block of statements until the expression in the while statement
evaluatesto fase. To avoid combinational feedback during synthesis, a while loop must be broken with an
@(posedge/negedge clock) statement (Section 9.2). For simulation a delay inside the loop will suffice. If the loop
contains only one statement, the begin ... end statements may be omitted.

Syntax Example 8.7
while.(expr&esion) while (loverflow) begin
begin @(posedge clk);
... Statements ... a=a+1;
end end

8.8. forever Loops

The forever statement executes an infinite loop of a statement or block of statements. To avoid combinational feed-
back during synthesis, aforever loop must be broken with an @(posedge/negedge clock) statement (Section 9.2). For
simulation a delay inside the loop will suffice. If the loop contains only one statement, the begin ... end statements
may be omitted. Itis

Syntax Example 8 .8
forever begin
forever @(posedge clk); // oruse a=#9at+l;
begin a=a+1;
... Statements .... end
end

8.9. repeat Not Synthesizable

The repeat statement executes a statement or block of statements a fixed number of times.
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Syntax Example 8.9
repeat (number_of_times) repeat (2) begin // after 50, a= 00,
begin #50 a= 2'b00; // after 100, a = 01,
... Statements ... #50 a= 2'b01; // after 150, a = 00,
end end// after 200, a= 01

8.10. disable

Execution of a disable statement terminates a block and passes control to the next statement after the block. Itis like
the C break statement except it can terminate any loop, not just the one in which it appears.
Disable statements can only be used with named blocks.

Syntax Example 8.10

disable block_name; begin: accumulate
forever
begin
@(posedge clk);
a=a+l,
if (a==2"b0111) disable accumulate;
end
end

8.11.if ... elseif ... else

Theif ... elseif ... else statements execute a statement or block of statements depending on the result of the expression
following theif. If the conditional expressionsin all theif’s evaluate to false, then the statementsin the el se block, if
present, are executed.

There can be asmany elseif statements as required, but only one if block and one else block. If thereis one statement
in ablock, then the begin .. end statements may be omitted.

Both the else if and else statements are optional. However if al possibilities are not specifically covered, synthesis
will generated extra latches.

Syntax Example 8 .11
if (expression) if (alu_func == 2'b00)
begin aluout = a+ by
... statements ... elseif (alu_func == 2'b01)
end auout = a- b;
elseif (expression) elseif (alu_func == 2'b10)
begin aluout =a & b;
... Statements ... else// alu_func== 2'b11
end auout = a|b;
... more elseif blocks ...
else if @==Dh) /I Thisif with no else will generate
begin begin I alatch for x and ot. This is so they
.. Statements ... x=1; /I will hold there old valueif (a!= b).
end ot = 4'b1111;
end
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Introduction to Verilog

The case statement allows a multipath branch based on comparing the expression with alist of case choices.

Statements in the default block executes when none of the case choice comparisons are true. With no default, if no
comparisons are true, synthesizers will generate unwanted latches. Good practice says to make a habit of puting in a

default whether you need it or not.

If the defaults are dont cares, definethem as ‘X’ and the logic minimizer will treat them as don’t cares and dsave area.
Case choices may be a simple constant, expression, or a comma-separated list of same.

Syntax

case (expression)
case_choicel:
begin
... Statements ...
end
case_choice2:
begin
... Statements ...
end
... more case choices blocks ...
default:
begin
... Statements ...
end
endcase

8.13. casex

Example 8 .12
case (alu_ctr)
2'b00: aluout =a+b;
2'b01: aluout=a- b;
2'b10: aluout=a& b;
default: aluout = 1'bx; // Treated as don’t cares for
endcase /I minimum logic generation.

Example 8 .13

case ({w, y})

2'b00: aluout =a+b; /lcaseif x,y is2'b00.

2'b01: aluout = a- b;

2'b10: aluout=a& b;

default: $display(“ Invalid w,y = %b %b ", w, y);
endcase //Display an error if w,y are11, or contain ‘x's.

In casex(a) the case choices constant “a’ may contain z, x or ? which are used as don't cares for comparison. With
case the corresponding simulation variable would have to match atri-state, unknown, or either signal. In short, case
uses x to compare with an unknown signal. Casex uses x asadon’t care which can be used to minimize logic.

Syntax

same as for case statement
(Section 8.10)

8.14. casez

Example 8 .12
casex (a)
2'blx: msh=1,; /Il mb=1ifa=10o0ra= 11
/'1f thiswere case(a) then only a=1x would match.
default: msb =0;
endcase

Casez isthe same as casex except only ?and z (not x) are used in the case choice constants asdon’t cares. Casezis
favored over casex since in simulation, an inadvertent x signal, will not be matched by a0 or 1 in the case choice.

Syntax Example 8 .13
same as for case statement casez (d)
(Section 8.10) 3bl?72b=2'b11; // b= 11ifd= 100 or greater
3'b01?:b=2'b10; // b= 10ifd= 010 or 011
default: b = 2'b00;
endcase
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|9. Timing Controls |

9.1. Delay Control, Not Synthesizable

This specifies the delay time units before a statement is executed during simulation. A delay time of zero can also be
specified to force the statement to the end of the list of statementsto be evaluated at the current simulation time. See
also “Intra-Assignment Delay, Not synthesizable” on p. 17

Syntax Example 9.1
#delay statement; #5a=b+c;  // evaluated and assigned after 5 time units
#0a=b+c; Il very last statement to be evaluated

9.2. Event Control, @

This causes a statement or begin-end block to be executed only after specified events occur. An event is achangein
avariable. and the change may be: a positive edge, a negative edge, or either (alevel change), and is specified by the
keyword posedge, negedge, or no keyword respectively. Several events can be combined with the or keyword. Event
specification begins with the character @and are usually used in always statements. See page 18.

For synthesis one cannot combine level and edge changesin the same list.

For flip-flop and register synthesisthe standard list contains only a clock and an optional reset.

For synthesisto give combinational logic, the list must specify only level changes and must contain all the variables
appearing in the right-hand-side of statements in the block.

Syntax Example 9.2
@ (posedge variable or always
negedge variable) statement; @(posedge clk or negedge rst)

if (rst) Q=0; else Q=D; // Definition for a D flip-flop.
@ (variable or variable.. . .) statement;

@(aorbore); /I re-evaluate if aor b or e changes.
sum=a+b+e; // Will synthesize to a combinational adder.

9.3. Wait Satement Not_Synthesizable

Delay executing the statement(s) following the wait until the specified condition evaluates to true.

Syntax Example 9.3
wait (condition_expression) statement; wait (Ic) a=b; // wait until c=0, then assignbto a

9.4. Intra-Assignment Delay, Not_Synthesizable

This delay #A is placed after the equal sign. The left-hand assignment is delayed by the specified time units, but the
right-hand side of the assignment is evaluated before the delay instead of after the delay. Thisisimportant when a
variable may be changed in a concurrent procedure. See also “ Delay in Assignment (not for synthesis)” on page 12.

Syntax Example9 .4
assign a=1; assign b=0;
variable = #At expression; always @(posedge clk)
b=#54 /I a= b after 5time units.
always @(posedge clk)
c=#5b; /* b was grabbed in this parallel proce-
dure before the first procedure changed it. */
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|10. Procedures. Always and Initial Blocks I

10.1. Always Block

The always block is the primary construct in RTL modeling. Like the continuous assignment, it is a concurrent
statement that is continuously executed during simulation. Thisalso meansthat all always blocks in a modul e execute
simultaneously. Thisisvery unlike conventional programming languages, in which all statements execute sequen-
tially. The always block can be used to imply latches, flip-flops or combinational logic. If the statements in the
always block are enclosed within begin ... end, the statements are executed sequentially. If enclosed within the fork
... join, they are executed concurrently (simulation only).

The always block is triggered to execute by the level, positive edge or negative edge of one or more signals (sepa-
rate signals by the keyword or). A double-edge trigger isimplied if you includeasigna in the event list of the aways
statement. The single edge-triggers are specified by posedge and negedge keywords.

Procedures can be named. In simulation one can disable named blocks. For synthesis it ismainly used as acom-
ment.

Syntax 1 Example 10 .1
always @(event_1 or event_2or ...) always @(aor b) // level-triggered; if a or b changeslevels
begin always @(posedge clk); // edge-triggered: on +ve edge of clk
... Statements ...
end see previous sections for complete examples

Syntax 2

always @(event_1 or event_2or ...)
begin: name for_block
... Statements ...
end

10.2. Initial Block

Theinitial block islike the always block except that it is executed only once at the beginning of the simulation. It is
typically used to initialize variables and specify signal waveforms during simulation. Initial blocks are not supported
for synthesis.

Syntax Example 10 .2
initial inital
begin begin
.. Statements ... cr=0; /l variablesinitialized at
end ck =1; // beginning of the simulation
end
inital /1 specify simul ation waveforms
begin
a=2'b00; /lattime=0,a= 00
#50a=2'b01; //attime=50,a= 01
#50 a=2'b10; //attime= 100,a= 10
end
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|11. Functions |

Functions are declared within a module, and can be called from continuous assignments, always blocks, or other
functions. In acontinuous assignment, they are evaluated when any of its declared inputs change. In aprocedure, they
are evaluated when invoked.

Functions describe combinational logic, and by do not generate latches. Thus an if without an else will simulate as
though it had a latch but synthesize without one. Thisisa particularly bad case of synthesis not following the simula-
tion. It isa good ideato code functions so they would not generate latches if the code were used in a procedure.
Functions are a good way to reuse procedural code, since modules cannot be invoked from within a procedure.

11.1. Function Declaration
A function declaration specifies the name of the function, the width of the function return value, the function input
arguments, the variables (reg) used within the function, and the function local parameters and integers.

Syntax, Function Declaration Example 11 .1

function [msh:Isb] function_name; function [7:0] my_func; // function return 8-bit value
input [msb:Isb] input_arguments; input [7:0] i;
reg [msb:lsh] reg_variable list; reg [4:0] temp;
parameter [msb:lsb] parameter_list; integer n;
integer [msb:Ish] integer_list; temp=i[7:4] | (i[3:0]);

... statements ... my_func = {temp, i[[1:0]};
endfunction endfunction

11.2. Function Return Value

When you declare afunction, avariable isalso implicitly declared with the same name as the function name, and with
the width specified for the function name (The default width is 1-bit). Thisvariableis“my_func” in Example11.1 0on
page 19. At least one statement in the function must assign the function return value to this variable.

11.3. Function Call

Asmentioned in Sect. 6.4., afunction call isan operand in an expression. A function call must specify initsterminal
list all the input parameters.

11.4. Function Rules
The following are some of the general rules for functions:
- Functions must contain at least one input argument.
- Functions cannot contain an inout or output declaration.
- Functions cannot contain time controlled statements (#, @, walit).
- Functions cannot enable tasks.
- Functions must contain a statement that assigns the return value to the implicit function name register.

Oct/1/03 19 Peter M. Nyasulu and JKnight



Introduction to Verilog

11.5. Function Example

A Function has only one output. If more than one return value is required, the outputs should be concatenated into
one vector before assigning it to the function name. The calling module program can then extract (unbundle) the indi-
vidua outputs from the concatenated form. Example 11.2 shows how thisis done, and also illustrates the general use
and syntax of functionsin Verilog modeling.

Syntax Example 11 .2

module simple_processor (instruction, outp);
function_name = expression input [31:0] instruction;

output [7:0] outp;

reg [7:0] outp;; // soit can be assigned in always block
reg func;

reg[7:0] oprl, opr2;

function [16:O(i nstr) // returns 1 1-bit plus 2 8-bits

input [31:0] instr;
regadd func;
reg [7:0] opcode, oprl, opr2;
begin
opcode = instr[31:24];
oprl =instr[7:0];
case (opcode)
8'b10001000: begin /I add two operands
add func=1;
opr2 = instr[15:8];
end
8'b10001001: begin /I subtract two operands
add func =0;
opr2 = instr[15:8];
end
8'b10001010: begin /' increment operand
add func=1;
opr2 = 8'b00000001;
end
default: begin; /I decrement operand
add func =0;
opr2 = 8'b00000001;
end
endcase
decode_add = {add_func, opr2, oprl}; ///concatenated into 17-bits
end bunidle

i endfunction unbundle

| alvw@ti on) begin
{func, op2, op1} =(decode_add)(instruction); // outputs unbundled

if (func==1)
outp = opl + opz;
else
outp = opl - op2;
end

endmodule
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|12. Tasks, Not Synthesizable |

A task is similar to afunction, but unlike afunction it has both input and output ports. Therefore tasks do not return
values. Tasks are similar to procedures in most programming languages. The syntax and statements allowed in tasks

are those specified for functions (Sections 11).

Syntax

task task_name;
input [msb:Isb] input_port_list;
output [msh:lsb] output_port_list;
reg [msh:lsh] reg_variable list;
parameter [msb:Isb] parameter_list;
integer [msb:lsb] integer_list;

... Statements....
endtask

Example 12 .1

module alu (func, a, b, c);
input [1:0] func;
input [3:0] a, b;
output [3:0] c;
reg[3:0] c; / so it can be assigned in always block
task my_and;

input[3:0] a, b;

output [3:0] andout;

integer i;

begin

for (1=3;i>=0;i=i-1)
andout[i] = &[i] & b[i];

end

endtask

always @(func or aor b) begin
case (func)
2'b00: my_and (a, b, ¢);
2'b01: c=a]|b;
2’b10:c=a-b;
default: c=a+b;
endcase
end
endmodule

Oct/1/03

21 Peter M. Nyasulu and JKnight



Introduction to Verilog

|13. Component | nference |

13.1. Latches

A latch isinferred (put into the synthesized circuit) if avariable, or one of itsbits, isnot assigned in all branch of an
if statement. A latchis also inferred in a case statement if avariableisassigned to in only some of the branches.

To improve code readability, use the if statement to synthesize alatch because it is difficult to explicitly specify
the latch enable signal using a case statement.

Whilein theory, a proper reset should be infered from the Verilog code shown, Synopsys will not do a proper job
without adding the //Synopsys comments shown.

Syntax Example 13 .1
See Sect. 8.11. and Sect. 8.12. for always @(clk,d); begin d D
if ... elseif ... else and case statements if (cIk) Q—4
q<=d,
//Synopsys statement end clk EN
These are treated as comments by al sim-
ulators. For synthesis using Synopsys, Example 13 .2
they direct the synthesizer as to what par- //Synopsys async_set reset “rst” d——p q
ticular inference is wanted. always @(clk or rst or d); begin Q—
if (rst) g<=0; clk EN
elseif (clk) g<=d; R
end rst———

13.2. Edge-Triggered Registers, Flip-flops, Counters

A register (flip-flop) isinferred by using posedge or negedge clause for the clock in the event list of an always
block. To add an asynchronous reset, include a second posedge/negedge for the reset and use the if (reset) ... else
statement. Note that when you use the negedge for the reset (active low reset), the if condition is (!reset).

Syntax
Example 13 .3 b CLR
always @(posedge clk or always @(posedge clk); c _3— D
posedge reset_1 or begin; ol—a
et negedge reset_2) ad<: b& ¢ ck > LK
en
if (reset_1) begin " @(posedge dlk
... reset assignments ways @(posedge clk or rst — ¢
end negedge rst); CLR
elseif (Ireset_2) begin begin; b D
... reset assignments if (! rst) a<=0; ol—a
end else a<=b;
else begin end dk > CLK
...register assignments
end

Example 13 .4 An Enabled Counter
reg [7:0] count;
wire enable;

always @(posedge clk or posedge rst) // Do not include enable.
begin;

if (rst) count<=0;

elseif (enable) count <= count+1;
end; /1 8 flip-flops will be generated.

end
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13.3. Multiplexers

A multiplexer isinferred by assigning a variable to different variables/values in each branch of an if or case state-
ment. Y ou can avoid specifying each and every possible branch by using the else and default branches. Note that a
latch will be inferred if avariableis not assigned to for all the possible branch conditions.

To improve readability of your code, use the case statement to model large multiplexers.

Syntax Example 13 .5

See Sections 8.9 and 8.10 for if (sel == 1)
if ... elseif ... else and case statements y=a a
else y

y=b;

case (sdl) sel[1:0]

d;

endcase

13.4. Adders/Subtracters

The +/- operators infer an adder/subtracter whose width depend on the width of the larger operand.

Syntax Example 13 .6
See Section 7 for operators if (sel ==1)
y=a+b;

else
y=c+ d

13.5. Tri-Sate Buffers

A tristate buffer isinferred if avariableis conditionally assigned avalue of z using an if, case or conditional operator.

Syntax Example 13 .7
See Sections 8.9 and 8.10 for if en==1)
if ... elseif ... else and case statements y=a .
else a Y
y =1'bz;

13.6. Other Component I nferences
Most logic gates are inferred by the use of their corresponding operators. Alternatively a gate or component may be
explicitly instantiated by using the primitive gates (and, or, nor, inv ...) provided in the Verilog language.
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|14. Finite Sate Machines. For synthesis |

When modeling finite state machines, it is recommended to separate the sequential current-state logic from the com-
binational next-state and output logic.

State Diagram

for lack of space the outputs are not
shown on the state diagram, but are:
in state0: Zot = 000,
in statel: Zot = 101,
in state?2: Zot = 111,
in state3: Zot = 001.

Using M acros for state definition

Asan dternative for-

parameter state0=0, statel=1,

state?2=2, state3=3;

one can use macros. For example after the

definition below 2'd0 will be textually

substituted whenever “state0 is used.
define state0 2'd0

“define statel 2'd1

“define state? 2'd

“define state3 2'd3;

When using macro definitions one must
put a back quote in front. For example:

Example 14 .1

module my_fsm (clk, rst, start, skip3, wait3, Zot);
input clk, rst, start, skip3, wait3;

output [2:0] Zot; // Zot isdeclared reg so that it can
reg[2:0] Zot; // be assigned in an always block.
parameter state0=0, statel=1, state?2=2, state3=3;
reg [1:0] state, nxt_st;

always @ (state or start or skip3 or wait3)
begin : next_state logic //Name of always procedure.

case (state)

stateO: begin
if (start) nxt_st = statel;
else nxt_st = state0;
end

statel: begin
nxt_st = state2;
end

state?: begin
if (skip3) nxt_st = stateO;
else nxt_st = state3;
end

state3: begin

if (wait3) nxt_st = state3;
else nxt_st = stateO;
end
default: nxt_st = state0;
endcase /I default is optional since all 4 cases are
end /I covered specifically. Good practice says usesit.

always @(posedge clk or posedge rst)
begin : register_generation
if (rst) state = state0;
elsestate =nxt_d;
end

always @(state) begin : output_logic
case (state)
state0:  Zot = 3'b00O0;
statel: Zot = 3'b101;
state2: Zot = 3'b111;

case (state) state3: Zot = 3'b001;
“state0: Zot = 3'b000; default: Zot = 3'b000;// default avoids latches
“statel: Zot =3'b101; endcase
“state2: Zot =3'b11l; end
“state3: Zot = 3'b001, | endmodule
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14.1.

14.2. Counters

Counters are a simple type of finite-state machine where separation of the flip-flop generation code and the next-state

generation code is not worth the effort. In such code, use the nonblocking “<=" assignment operator.
Binary Counter - Example 14 .2
Using toggle flip-flops reg [3:0] count; wire TC; // Terminal count (Carry out)
always @(posedge clk or posedge rset)
begin

if (rset) count <=0;
else count <= count+1,;
end
assign TC = & count; // See“ Reduction Operators’ on page 7

14.3. Shift Registers

Shift registers are a so best done completely in the flip-flop generation code. Use the nonblocking “<=" assignment
operator so the operators “<< N” shiftsleft N bits. The operator “>>N" shiftsright N bits. See also Example 8 .3 on

page 13.

Shift Register Example 14 .3

reg [3:0] Q;
Ql3] E QI2]
l(

always @(posedge clk or posedge rset)
Q[1] T Q[0] ) begin
ct if (rset) Q<=0;
else begin

Q <=Q << 1; // Left shift 1 position

QI[0] <= Q[3]; /* Nonblocking means the old Q[ 3] is sent
to Q[ 0]. Not therevised Q[ 3] from the previous line.
end

[ 5l
A

CLK

Linear-Feedback Shift Register Example 14 .4

J reg [3:0] Q;
always @(posedge clk or posedge rset)
QU] — QI0)— (J begin

EE Rl 16
14 Ci4 ici4 1 if (rset) Q<=0;

else begin
Q <={Q[2:1]: Q[3]"Q[2]; /* The concatenation operators
“{..}” formthe new Q from elements of the old Q. */
end
end

CLK
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|15. Compiler Directives I

Compiler directives are speciad commands, beginning with *, that affect the operation of the Verilog smulator. The
Synopsys Verilog HDL Compiler/Design Compiler and many other synthesis tools parse and ignore compiler direc-
tives, and hence can beincluded even in synthesizable models. Refer to Cadence Verilog-XL Reference Manual for a
complete listing of these directives. A few are briefly described here.

15.1. Time Scale

“timescale specifies the time unit and time precision. A time unit of 10 ns means atime expressed as say #2.3 will
have adeay of 23.0 ns. Time precision specifies how delay values are to be rounded off during simulation. Valid
time unitsinclude s, ms, us (us), ns, ps, fs.

Only 1, 10 or 100 are valid integers for specifying time units or precision. It also determines the displayed time units
in display commands like $display

Syntax Example 15 .1
» . o . ‘timescale 1 ng/1ps // unit =1ns, precision=1/1000ns
timescale time_unit / time_precision; “timescale 1 ns/100 ps // time unit = 1ns; precision= 1/
10ns;

15.2. Macro Definitions

A macroisan identifier that represents a string of text. Macros are defined with the directive “define, and areinvoked
with the quoted macro name as shown in the example. Verilog compiliers will substitute the string for the macro
name before starting compilation. Many people prefer to use macros instead of parameters.

Syntax Example 15 .2

“defineadd Ish a[7:0] + b[7:0]

“defineN 8 // Word length

wire['N -1:0] S;

| assign S="add_Isb; //assign S= a[7:0] + b[7:0];

“define macro_name text_string;
.. macro_name. ..

15.3. Include Directive

Include is used to include the contents of atext file at the point in the current file where the include directiveis. The
include directive is similar to the C/C++ include directive.

Syntax Example 15 .3

module x;
‘include “dclr.v”; // contents of file “ dclr,v" are put here

“includefile_name;
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|16. System Tasks and Functions |

These are tasks and functions that are used to generate input and output during simulation. Their names begin with a
dollar sign ($). The Synopsys Verilog HDL Compiler/Design Compiler and many other synthesis tools parse and
ignore system functions, and hence can be included even in synthesizable models. Refer to Cadence Verilog-XL Ref-
erence Manual for acomplete listing of system functions. A few are briefly described here.

System tasks that extract data, like $monitor need to bein aninitial or always block.

16.1. Display Selected Variables; $display, $strobe, $monitor

These commands have the same syntax, and display text on the screen during simulation. They are much less conven-
ient than waveform display toolslike cwaves® or S’gnalscan®. $display and $strobe display once every time they
are executed, whereas $monitor displays every time one of its parameters changes. The difference between $display
and $strobeis that $strobe displays the parameters at the very end of the current simulation time unit rather than
exactly where it is executed. The format string is like that in C/C++, and may contain format characters. Format char-
actersinclude %d (decimal), %h (hexadecimal), %b (binary), %c (character), %s (string) and %t (time), %om (hierar-
chy level). %5d, %5b etc. would give exactly 5 spaces for the number instead of the space needed. Append b, h, o to
the task name to change default format to binary, octal or hexadecimal.

Syntax Example 16 .1
$display (“format_string”, par_1, par_2,...); initial begin  // c below isin submodule submod1.
$strobe (“format_string”, par_1, par_2,...); $displayh (b, d, submod1.c); //No format, display in hex.
$monitor (“format_string”, par_1, par_2, ...); | $monitor (“time=%t, d=%h, c=%b",

$displayb ( as above but defaults to binary.. $time, a, submodl.c);
$strobeh (as above but defaults to hex.. end
$monitoro (as above but defaultsto octal.. .|

16.2. $time, $stime, $realtime

These return the current simulation time as a 64-bit integer, a 32-bit integer, and a real number, respectively. Their
useisillustrated in Examples 4.7. and 15 .1.

16.3. $reset, $stop, $finish

$reset resets the simulation back to time O; $stop halts the smulator and putsit in the interactive mode where the
user can enter commands; $finish exitsthe simulator back to the operating system.

16.4. $deposit

$deposit setsanet to a particular value.

Syntax Example 16 .2

$deposit (net_name, value); $deposit (b, 1'b0);

$deposit (outp, 4 b001x);// outp is a 4-bit bus

16.5. $scope, $showscope

$scope(hierarchy _name) sets the current hierarchical scope to hierarchy _name. $showscopes(n) lists all modules,
tasks and block names in (and below, if nis set to 1) the current scope.

16.6. $list

$list (hierarchical_name) lists line-numbered source code of the named module, task, function or named-block.
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16.7. $random

Introduction to Verilog

$random generates arandom integer every timeit iscaled. If the sequenceisto be repeatable, the first time one
invokes random giveit a numerical argument (a seed). Otherwise the seed is derived from the computer clock.

Syntax

xzz = $random[(integer)];

Example 16 .3
reg [3:0] xyz;
initial begin
xyz= $random (7); // Seed the generator so number
/I sequence will repeat if simulation is restarted.
forever xyz = #20 $random;
[/l The 4 1b bits of the random integerswill transfer into the
Il xyz. Thus xyz will be a randominteger 0 < xyz< 15.

16.8. $dumpfile, $dumpvar, $dumpon, $dumpoff, $dumpall
These can dump variable changesto asimulation viewer like cwaves®. The dump files are capable of dumping all the
variablesin asimulation. Thisis convenient for debugging, but can be very slow.

Syntax

$dumpfile(“filename.dmp”)
$dumpvar dumpsall variablesin the
design.

$dumpvar (1, top) dumpsall the varia-
bles in module top and below, but not
modul es instantiated in top.

$dumpvar (2, top) dumpsall the varia-
blesin module top and 1 level below.
$dumpvar(n, top) dumpsall the varia-
blesin module top and n-1 levels below.
$dumpvar (0, top) dumpsall the varia-
blesin module top and all level below.
$dumpon initiates the dump.
$dumpoff stop dumping.

16.9. $shm_probe, $shm_open

Example 16 .4

/I Test Bench
module testbench:
rega, b; wirec;
initial begin;
$dumpfile(“ cwave _data.dmp”);
$dumpvar //Dump all the variables
/I Alternately instead of $dumpvar, one could use
$dumpvar (1, top) //Dump variablesin the top module.
/I Ready to turn on the dump.
$dumpon
a=1; b=0;
topmodule top(a, b, c);

end

These are speciad commands for the Smulation History Manager for Cadence cwaves® only. They will savevariable

changesfor later display.
Syntax

$shm_open (“cwave dump.dm”)
$shm_probe (varl,var2, var3);

/* Dump al changesin the above 3 varia-
bles. */

$shm_probe(a, b, instl.varl, instl.var2);
/* Use the qualifier inst1. to look inside
the hierarchy. Here inside module
instance “ inst1” thevariables varl and
var2 will be dumped.*/

Example 16 .5

/I Test Bench
modul e testbench:
rega, b; wirec;
initial begin;
$shm_open(“cwave data.dmp”);
$shm_probe(a, b, c)

* See a'so the testbench example in “Test Benches’ on p. 30
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16.10. Writing to a File; $fopen, $fdisplay, $fstrobe $fmonitor and $fwrite

These commands write more selectively tofiles.
$fopen opens an output file and gives the open file a handle for use by the other commands.
$fclose closes the file and lets other programs accessit.
$fdisplay and $fwrite write formated data to a file whenever they are executed. They are the same except $fdisplay
inserts a new line after every execution and $write does not.
$strobe also writes to afile when executed, but it waits until all other operations in the timestep are complete before
writing. Thusinitial #1 a=1; b=0; $fstrobe(handl, a,b); b=1; will write write 1 1 for aand b.
$monitor writes to afile whenever any one of its arguments changes.
See “Display Selected Variables; $display, $strobe, $monitor” on page 27 for the meaning of %h, %b etc in the
example.

Syntax

Example 16 .6 Output values every clock cycle
/I Test Bench
modul e testbench:

reg [15:0]a; reg clk; integer handl;

initial begin;

handlel=$fopen(“filenam1.suffix”)
handle2=$fopen(“filenam2.suffix”)

$fstrobe(handlel, format, variable list)
/Istrobe datainto filenaml.suffix
$fdisplay((handle2, format, variable list)
/lwrite dataiinto filenam2.suffix
$fwrite((handle2, format, variable list)
/write datainto filenam2.suffix all on

hand1=$fopen(“ datastuff.txt");
forever @(posedge clk) begin
$fstrobe (handl, “time=%5t, a=%h, c=%b",
$time, a, submod1.c);.
end // Never put statements after a forever block.

end
initial begin
clk=0; a=8"h2b;
forever #5 clk=~clk;
end // Never put statements after a forever block

/I oneline. Put \nin the format string
/I where anew lineisdesired.

See Sect 16.1.for examples of format.

initial begin
a=at8;
#3000 $fclose (handl); // Closethefile
$Hinish;
end
submod submod1(a, clk); // with internal variable c.
endmodule

Output

time= 5, a=2b, c=0
time= 10, a=2c, c=1
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|17. Test Benches |

A test bench supplies the signals and dumps the outputs to simulate a Verilog design (module(s)). It invokes the
design under test, generates the simulation input vectors, and implements the system tasks to view/format the results
of the simulation. It is never synthesized so it can use al Verilog commands.

To view the waveforms when using Cadence Verilog XL Simulator, use the Cadence-specific Simulation History
Manager (SHM) tasks of $shm_open to open thefile to store the waveforms, and $shm_probe to specify the varia-
blesto be included in the waveforms list. Y ou can then use the Cadence cwaves waveform viewer by typing cwaves

& at the UNIX prompt.

Syntax

$shm_open(filename);
$shm_probe(varl, var2, ...)

Note also
var=$random
wait(condition) statement

Example 17 .1

‘timescale 1 ns/100 ps // time unit = 1ns; precision = 1/10 ns;

module my_fsm_tb; // Test Bench of FSM Design of Example 14.1
/* ports of the design under test are variablesin the test bench */
reg clk, rst, start, skip3, wait3;
wire Button;

[**** DESIGN TO SIMULATE (my_fsm) INSTANTIATION ****/
my_fsm dutl (clk, rst, start, skip3, wait3, Button);

[**** SECTION TO DISPLAY VARIABLES ****/
initial begin
$shm_open(“sim.db”);  //Open the SHM database file
/* Specify the variablesto be included in the waveforms to be
viewed by Cadence cwaves */
$shm_probe(clk, reset, start);
/I Use the qualifier dutl. to look at variables inside the instance dutl.
$shm_probe(skip3, wait3, Button, dutl.state, dutl.nxt_st);
end

[**** RESET AND CLOCK SECTION ****/
initial begin
clk =0; rst=0;
#1 rst=1; // Thedelay givesrst a posedge for sure.
#200 rst = O; // Deactivate reset after two clock cycles +1 ns*/
end
always #50 clk = ~clk; // 10 MHz clock (50* 1 ns*2) with 50% duty-cycle

[**** SPECIFY THE INPUT WAVEFORMS skip3 & wait3 ****/

initial begin
skip3=0; wait3=0; //attime0, wait3=0, skip3=0
#1; /I Delay to keep inputs from changing on clock edge.

#600 skip3 = 1; // at time 601, wait3=0, skip3=1
#400 wait3 = 1; // at time 1001, wait3=1, skip3=0
skip3=0;
#400 skip3 = 1; // at time 1401, wait3=1, skip3=1
wait(Button) skip3 = 0; // Wait until Button=1, then make skip3 zero.
wait3 = $random; //Generate a random number, transfer Isb into wait3
$finish; /I stop simulation. Without this it will not stop.
end

endmodule
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17.1. Synchronous Test Bench
In synchronous designs, one changes the data during certain clock cycles. In the previous test bench one had to keep
counting delays to be sure the data came in the right cycle. With a synchronous test bench the input datais stored in a
vector or array and one part injected in each clock cycle. The Verilog array is defined in Section 18.

The disable statement, Sect. 16.10. and $deposit Sect. 16.4., may also be useful in synchronous test benches.
Synchronous test benches are essential for cycle based simulators which do not use any delays smaller than a clock

cycle.

Thingsto note:
data[8:1]=8'1010_1101;

The underscore visually separates the
bits. It isignored by the simul ator.

Example 17 .2

/I Synchronous test bench
module SynchTstBch:

reg[8:1] data;
if (I==9) $finish; reg x,clk;
When the data is used up, finish integer I;
x<=date[l]; I<=1+1; initial begin

When synthesizing to flip-flopsasinanin data[8:1]=8'p1010 1101; // Underscor e spaces hits.

an @(posedge... procedure, =1,
always use nonblocking. Without that x=0;
you will beracing with the flip-flopsin clk=0;

forever #5 clk= ~clk;
/I Any statements placed after forever will never be reached!
end

the other modules.

/*** Send in a new value of x every 3rd clock cycle***/
always
begin: data in_proc
@(posedge clk)
if (I==9) $finish; // End simulation
@(posedge clk) // Wait here for the 2nd clock edge.
@(posedge clk) // After the 3rd edge executes begin ...
begin
#1; I/ Keepsdata from changing on clock edge.
x<=data[l];
I<=1+1,
end
end // data_in_proc

topmod top1(clk, x);
endmodule
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|18. Memorys |

18.1. Two-Dimensional Arrays
Two dimensional arrays can be declared and accessed by word. To get at a bit(s) one must equate the output to a
register or wire and select the bits from this new variable. See Example 18 .1

18.1.1 Initializing Memory From a File
The command $readmemb will read afile of binary numbersinto the array. The datafile consists of addressesand

data. An address written in hex as @hhh...and indicates the address of the first word in a block of data. It isfollowed
by binary data words separated by blanks. Legal binary bits are“01x X zZ _". Datanot included in thefile will be
given xxx... values. The data may be given in noncontiguous blocks if an address proceeds each block. If noinitial
addressis given, @000 is assumed for the first dataword. Comments are allowed in datafiles.

If start addr isgiven the memory array will befilled starting at that address and continue until finish_addr (or the
end of the array) is reached. One must have start address< @hhh..., the initial addressin thefile.

The command $readmemh is similar except the data must contain hexadecimal numbers.

Syntax Example 18 .1
reg [wordsize:0] array [O:arraysize] reg [7:0] memry [0:31]; // 32 byte memory.
wire [7:0] memwrd;
readmemb(“file_name”, array_name); wirex:
readmemb(“file_name”, array_name, initial begin
start_addr); // I nitialize memory contents from file.
readmemb(“file_name”, array_name, $readmemb(“init.dat”, memry, 8);
start_addr, finish_addrs); // words 8 and 9 are not in the file and will default to x.
end

readmemh(“file_name”, array_name); S
/I start_addr and finish addr are optional |// Extract last word in memory.
assign memwrd= memry[31];
/l Extract most sig bit inword 31
assign x= memwrd[7];

file init.dat
/I Since start_addr =8 memry[0:9] will all be stored as XX0xxXx.
@OQ0A //

10101100 11110000 1x000x11 11110101 01011010 01001100]
XxxxZzzz 00000000

@O1E // 5'h1E = 5'd30. Underscore gives readability.
1100 1010 00011_0001
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