

TITLE THE DESIGN AND REALISATION OF AN

FPGA BASED AUDIO PROCESSOR

STUDENT MIKE HUDSON 18022224

PROJECT

SUPERVISOR

DR. JOHN HOLDING

COURSE BENG HON ELECTRICAL AND

ELECTRONIC ENGINEERING

(a8022224@shu.ac.uk)

9/05/2012

Mike Hudson

 II

Preface

This report describes project work carried out within the Engineering Programme at

Sheffield Hallam University from October 2011 to April 2012.

The submission of the report is in accordance with the requirements for the award of the

degree of “Bachelor of Electrical and Electronic Engineering with Honours” under the

auspices of the University.

Mike Hudson

 III

Acknowledgements

I would like to thank my supervisor Dr John Holding for his advice and guidance

throughout the duration of this project. I would also like to thank every one who has

helped me over at the Altera Internet forums.

Mike Hudson

 IV

Abstract

This project report documents the use of a field programmable gate array (FPGA) for

real-time processing of audio. The traditional software approach to digital signal

processing often introduces an unacceptable delay between the audio input and the audio

output (referred to as the total system latency). This can be problematic for applications

that require real-time operation such as live processing of musical instruments. An

FPGA design allows the same software routines to be implemented as hardware,

therefore eliminating high system latency and potential unreliability.

Quartus II v11.0 and SOPC Builder have been used to design and create the VHDL code

to be synthesised. The implementation of the VHDL design uses the DE2 development

board from Altera which is based around a Cyclone EP2C35 FPGA device having 35000

logic elements.

Four audio effects were explored and implemented: echo, flanger, filter and reverb.

External control to the FPGA was implemented using rotary encoders to change various

effect parameters, and visual feedback been given through an LCD. The final design

utilises a Nois II soft-core processor to form part of the user interface. The results show

that the total system latency of the FPGA audio processor was considerably less than a

computer software application: less than 1ms compared to 10ms.

The initial concept has been proven using a total of 11702 logic elements. There is

much scope for development of the final project. Future work could focus of a more

user-friendly system in terms of the user interface and also the creation of more

advanced audio effects.

Mike Hudson

 V

Table of contents

Preface .. II	

Acknowledgements .. III	

Abstract .. IV	

Table of contents .. .V

Nomenclature and abbreviations ... VIII	

Table of Figures .. IX

1	 Introduction .. 1	
	 Digital audio processing ... 1	 1.1

	 Project aims and objectives .. 2	 1.2

	 Previous works and current products ... 3	 1.1

2	 Background and Theory ... 5	
	 Background ... 5	 2.1

	 Digital audio theory .. 5	 2.2

	 The building blocks of basic audio effects ... 7	 2.3

	 Digital filter example .. 8	 2.4

	 Conclusion .. 8	 2.5

3	 Approach .. 10	
	 General ... 10	 3.1

	 Selection of Tools and Software ... 10	 3.2

4	 The Altera DE2 development board .. 12	
	 Features ... 12	 4.1

5	 Altera Quartus II ... 14	
	 Introduction .. 14	 5.1

	 SOPC Builder ... 14	 5.2

6	 Interfacing Audio to the audio to the FPGA ... 16	
	 The Wolfson WM8781 audio ADC ... 16	 6.1

	 Configuration .. 18	 6.2

6.2.1	 Sampling frequency .. 20	
6.2.2	 Register map .. 20	

Mike Hudson

 VI

	 Serial/parallel conversion ... 21	 6.3

	 Digital serial data stream .. 24	 6.1

	 Summary ... 24	 6.2

7	 Building a project library of Quartus block symbols ... 25	
	 Multiply .. 25	 7.1

	 Sum ... 25	 7.2

	 Mixer .. 26	 7.3

	 Small delay-line in hardware .. 27	 7.4

	 Summary ... 28	 7.5

8	 Implementing a buffer in RAM .. 29	
	 Requirements .. 29	 8.1

	 Choice of RAM device ... 29	 8.2

	 SDRAM controller Core ... 29	 8.3

	 Reading/writing to and from the SDRAM ... 30	 8.4

	 RAM state machine .. 32	 8.5

	 Implementation of a circular buffer .. 34	 8.6

	 Multiple read pointers ... 36	 8.7

	 Multiple buffer instances .. 36	 8.8

	 Summary ... 37	 8.9

9	 Echo effect .. 39	
	 Implementation ... 39	 9.1

10	 Audio filter .. 41	
	 State variable filter ... 41	 10.1

	 Discussion ... 43	 10.2

11	 Flanger effect .. 44	

12	 Reverberation effect ... 46	
	 A basic reverb ... 46	 12.1

	 The all-pass filter .. 46	 12.2

12.2.1	 Multiple all-pass filters ... 48	
	 Impulse response test .. 48	 12.3

	 Comparison with a commercial software reverb .. 51	 12.4

	 Summary ... 54	 12.5

Mike Hudson

 VII

13	 Latency test ... 56	
	 Comparison with computer software .. 56	 13.1

	 Summary ... 57	 13.2

14	 User Interface ... 59	
	 Considerations .. 59	 14.1

	 Quadrature rotary encoder .. 60	 14.2

	 Interfacing the controls ... 62	 14.3

	 Visual feedback .. 62	 14.4

	 Discussion and summary .. 64	 14.5

15	 Conclusion .. 65	
	 Further work ... 65	 15.1

16	 References ... 67	

17	 Appendices .. 69	
	 Quartus II screenshots .. 69	 17.1

	 Project photographs .. 70	 17.2

Mike Hudson

 VIII

Nomenclature and abbreviations

ADC Analogue to Digital Converter
AIFF Audio Interchange File Format

CODEC Refers to audio ADC/DAC device

DAC Digital to Analogue Converter

DE2 Refers to the Altera Development and Education board

DSP Digital Signal Processor

FIR Finite Impulse Response

FPGA Field Programmable Gate Array
HDL Hardware Description Language
I2C Inter-Integrated Circuit Serial Protocol

IC Integrated Circuit

IDE Integrated development Environment
IEEE Institute of Electrical and Electronics Engineers

IP Intellectual property
LSB Least Significant Bit
MAC Multiply Accumulate
MSB Most Significant Bit

PISO Parallel In Serial Out
PLL Phase Locked Loop

SIPO Serial In Parallel Out
SOPC System On Programmable Chip

VHDL VHSIC Hardware Description Language

Mike Hudson

 IX

Table of Figures

Figure 2-1: (a) An analogue signal (b) Digitised PCM signal (c) Digitised PCM signal

with fewer bits of precision (Katz. D & Gentile R, 2009) ... 6	

Figure 2-2: Digital audio processor example- volume (Udo Zolzer.) 6	

Figure 2-3: Circular buffer concept .. 7	

Figure 2-4: Parallel FPGA FIR filter structure (Maxfield. C, 2006) 8	

Figure 4-1: The Altera DE2 inputs and outputs (Altera DE2 manual) 12	

Figure 6-1: Audio codec schematic (Altera DE2 User manual) 17	

Figure 6-2: left justified format (WM8781 datasheet) ... 19	

Figure 6-3: Master mode (WM8731 datasheet) ... 20	

Figure 6-4: WM8731 register map (WM8731 datasheet) .. 21	

Figure 6-5: Digital audio stream into the FPGA .. 22	

Figure 6-6: Codec waveforms .. 23	

Figure 6-7: Serial to parallel .. 23	

Figure 6-8: Parallel to serial ... 23	

Figure 6-9: Digital audio interfaced to the FPGA .. 24	

Figure 7-1: Dry/wet ratio control of affected and original signal 26	

Figure 7-2: Wet/dry ratio block symbol in Quartus ... 27	

Figure 7-3: Delay-line simulation in Quartus simulator .. 28	

Figure 8-1: SDRAM Controller with Avalon interface block diagram (Altera Embedded

Peripherals IP User Guide) ... 30	

Figure 8-2: SOPC Builder custom component signals .. 31	

Figure 8-3: Component connection to the SDRAM Controller in SOPC Builder 31	

Figure 8-4: System top level connections in Quartus .. 31	

Figure 8-5: Read and write waveforms for Avalon memory mapped master 32	

Figure 8-6: State Machine for a RAM Buffer .. 32	

Figure 8-7: SDRAM state machine connected to SOPC System 34	

Figure 8-8: Problem with circular buffer ... 35	

Figure 8-9: Multiple read pointers in the RAM state machine .. 36	

Figure 8-10: Multiple SDRAM buffer components in SOPC Builder 37	

Mike Hudson

 X

Figure 9-1: Variable delay ... 39	

Figure 9-2: Variable delay feedback .. 39	

Figure 9-3: Delay effect symbol on top level in Quartus ... 40	

Figure 10-1: State variable filter .. 41	

Figure 10-2: Low pass filter on the DE2 (fc = 500hz) ... 43	

Figure 11-1: Flanger diagram in Matlab Simulink .. 44	

Figure 11-2: Flanger effect on the DE2 ... 45	

Figure 11-3: Original signal mixed with a ten sample delayed version 45	

Figure 12-1: Comb filter .. 46	

Figure 12-2: All-pass filter ... 47	

Figure 12-3: An all-pass filter in Simulink .. 47	

Figure 12-4: All-pass filter in Quartus II ... 47	

Figure 12-5: Multiple series all-pass reverb ... 48	

Figure 12-6: Sine wave logarithmic sweep test signal ... 49	

Figure 12-7: One all-pass filter 20ms delay time and 0.7 gain .. 50	

Figure 12-8: Three series all-pass filters on the DE2 (setting one) 50	

Figure 12-9: Three series all-pass filters on the DE2 (setting two) 51	

Figure 12-10: Averb reverb in Logic Pro ... 52	

Figure 12-11: Averb setting one .. 53	

Figure 12-12: Averb setting two .. 53	

Figure 13-1: Series effect chain ... 56	

Figure 13-2: Latency test setup .. 56	

Figure 13-3: DE2 total system latency at 48kHz ... 57	

Figure 13-4: Logic Pro total system latency at 48khz .. 57	

Figure 14-1: Quadrature encoder outputs .. 60	

Figure 14-2: Quadrature encoder connections to the DE2 GPIO header 60	

Figure 14-3: Simulation of quadrature encoder VHDL code ... 61	

Figure 14-4: Construction of the rotary control box .. 61	

Figure 14-5: Eight rotary controls and 10 LEDS ... 61	

Figure 14-6: All eight encoder connected on the top level in Quartus 62	

Figure 14-7: LCD when no effect has been selected ... 63	

Mike Hudson

 XI

Figure 14-8: Reverb effect selected- placement of text corresponds to a rotary encoder 64	

Figure 17-1: Control box .. 70	

Figure 17-2: Control input via GPIO on DE2 board .. 70	

Figure 17-3: Testing the audio effects ... 71	

Figure 17-4: Apple’s impulse response utility and the Logic Pro computer software 71	

Mike Hudson

 1

1 Introduction

 Digital audio processing 1.1

Digital audio processing offers a huge amount of flexibility and an almost infinite

amount of possibility to manipulate and process audio in a way that would not be

possible using analogue techniques. In the last two decades or so, the music studio has

evolved drastically from consisting of predominantly analogue equipment to nearly all

digital equipment, based around a computer or ‘digital audio workstation’. A traditional

recording studio would have several rooms full of analogue hardware, mixers, effects

units and huge multi-track recorders using magnetic tape. An enthusiastic technician

may spend days going through their huge repository of equipment to find the perfect

reverb effect for a recording.

With the development of digital signal processing (DSP) and computer processing

power increasing at an exponential rate, it has become possible to have all those

analogue reverb units and amplifiers emulated in software on even the most modest of

personal computers using the click of a computer mouse to audition each of them. The

introduction of Steinberg’s Virtual Studio Technology (VST) in 1996 played a key role

in allowing this to happen.

This significant development has paved way for completely new instruments and made

musicians and technicians look at making music in a different way spawning hundreds

of new music genres. The last decade of music provides a good (audible) example of

how the development of technology directly influences music.

The underlying concepts and theory of DSP may not have changed much, but the

technology on which they are implemented continues to develop at a phenomenal rate.

The change in embedded multimedia processing technology has demonstrated

(especially in the last decade) how fast the technology is moving. However, as the need

for higher speed, lower cost and smaller size increases, demanding digital processing

applications are beginning to see the limitations of traditional sequential instruction DSP

processors.

Mike Hudson

 2

Although not new technology, FPGAs are starting to be used more and more to

overcome the limitations of general purpose DSPs in applications where low latency is

critical.

 Project aims and objectives 1.2

The aim of this project is to create a real-time, digital audio processor using an FPGA to

overcome the problems with latency experienced with traditional computer software.

Along the way, comparisons will be made, discussing advantages and disadvantages of

related technology and development tools.

The initial requirements and proposed outcomes were established:

• A minimum of 44.1kHz with minimum 16 bit sample depth

• Real-time line in and out audio

• A platform which can be used to further develop and implement audio

processing effects

• A selection of digital audio effects

• User controllable parameters via a software interface- preferably in real time

• Re-routable effects

• User feedback of parameters and selections

The project will be targeted at CD quality audio: two channel stereo, with a sample rate

of 44.1kHz and bit depth of 16 bits. The quality should also be acceptable for the

processing of an electric guitar audio signal. For audio processing of instruments and

voice, a real-time response of the audio processor is desired in order to minimise and

potentially completely eradicate perceivable delay between the input and the output

signals. A typical delay value (also referred to as system latency) on a computer

software implementation of an audio processor may be in the region of around 10ms.

Therefore an acceptable result would be a latency of less than 10ms of latency on an

Mike Hudson

 3

FPGA.

A short-list of effects was created. Each of these effects require a different functionality

in a digital processing system and would also demonstrate a degree of flexibility in

terms of what can be created. In other words, the choices of effects were carefully

chosen in order to prove a concept. The idea being, that if these effects can be

successfully implemented then almost any audio effect can be created.

The proposed digital audio effects:

• Echo – requires a relatively large buffer size (at least one second)

• Flanger – requires the ability to modulate a delay value in real-time

• Filter – requires only very small fixed sample delays

• Reverb – requires multiple buffer instances and read pointers

The effects should be selectable and parameters of each audio effect should be

controllable via user input.

 Previous works and current products 1.1

Recent years has seen an increase in the use of FPGAs being used for high audio

equipment that require truly parallel operations on multiple channels whilst maintaining

ultra low latency. An example of this is Euphonix choice to use the Altera Cyclone

FPGAs in their high-end audio mixing consoles.

There have been a number previous projects regarding audio processing on an FPGA.

Khan et al. (2010) demonstrated their FPGA based design of an I2C controller for

fetching sound from the audio codec on-board the Altera DE2 development board. This

alone can be quite a time consuming task and requires a more in depth knowledge of I2C

and simulation options without the use of any existing IP proving how valuable IP

blocks are to the designer to realise trivial functions.

Mike Hudson

 4

T. Kaczmarczyk et al. (2010) explores further the possibilities of creating a well finished

and useable project with their winning design for the Swedish Embedded Award for

2010 and proves it is possible to realise a complete guitar multi-effect chain on a single

FPGA chip: a project they claim could ‘potentially disrupt the market’. Results are

impressive with overall system latency kept under one sample at 48kHz. A NIOS soft-

core processor has been utilised to provide a rich graphical animated VGA interface

comparable to current products on the market such as Native Instruments Guitarrig.

Mike Hudson

 5

2 Background and Theory

 Background 2.1

The need to create faster and smaller devices whilst also maintaining a low cost

continues. The most common solution for increasing performance in a DSP would be to

run at a higher clock speed. However, even with high-clock rates, two MAC units and

modified bus architecture, there is a maximum level of performance that can be achieved

(Maxfield. C, 2006)

Audio applications require absolute minimum system latency especially for equipment

used in a live environment or recording studio; it needs to be as close to real time as

possible. Cascaded digital audio effect chains can introduce unacceptable delays, which

can be very disruptive (any delay over 10 milliseconds would be deemed unacceptable)

to the recording artist or technician.

An FPGA DSP implementation offers may advantages over the traditional software

approach:

• True hardware

• Highly flexible

• True parallel processing of DSP operations

• Reliable

• Higher system level integration

• Ability to emulate an embedded microprocessor for maximum flexibility

 Digital audio theory 2.2

Generally, the first stage of Digitally processing audio is to convert the analogue audio

signal to a digital representation using an analogue to digital converter (ADC). The

digital signal processing is then carried out before being fed into a digital to analogue

converter (DAC) to create an analogue signal from the digital one. The ADC and DAC

are most commonly offered as one IC package, referred to in this report and the majority

Mike Hudson

 6

of literature as an audio Codec. The ADC ‘samples’ the amplitude of the analogue

signal at even points in time, at a rate that obeys Nyquist’s sampling theorem, referred to

as the sample rate or ‘fs’. The value of the amplitude is represented with a binary value

(PCM) typically, for audio, anywhere from 16 to 24 bits in length. In general, the higher

the bit depth, the more precision and lower quantisation error and noise a signal will

have. Figure 2-1 shows how precision can be lost with a smaller bit length.

Figure 2-1: (a) An analogue signal (b) Digitised PCM signal (c) Digitised PCM

signal with fewer bits of precision (Katz. D & Gentile R, 2009)

The most basic of effects, a volume control can be realised by multiplying each digital

sample value by a value less than one. Since most digital audio sample data is

represented as fractional twos-complement format, the values range from -1 to +1

multiplying by any number less than unity will remain in range -1 to +1.

The result from Figure 2-2 would be an output signal half the amplitude of the input.

Figure 2-2: Digital audio processor example- volume (Udo Zolzer.)

Mike Hudson

 7

 The building blocks of basic audio effects 2.3

Digital signal processing routines consist of repetitive multiplication and summation

(referred to as multiply accumulate or MAC) of multiple samples delayed at different

points in time, which is usually given in terms of the sample rate. In order to realise

some common digital audio effects, these three main components need to be established:

• Variable delay line

• Multiplier

• Accumulator

These fundamental operations are arranged in various structures to obtain the desired

effect on the output.

The variable delay line would typically be some form of RAM buffer that stores a fixed

amount of previous sampled values. The RAM will need to be implemented as a

circular buffer- when the write pointer reaches the end of the specified buffer length it

goes back to the beginning and overwrites the oldest sample. Many DSP routines

require multiple samples of a signal simultaneously but all at different delayed points in

time. This is effectively realised by having multiple read pointers whose locations can

be specified by the designer, usually with reference to the write pointer. This concept

can be visualised in Figure 2-3 where the read pointer is lagging the write pointer.

Figure 2-3: Circular buffer concept

write pointer

read pointer

circular
buffer

Mike Hudson

 8

The multiplier and accumulator are relatively straightforward to implement. However,

the choice of floating point or fixed-point arithmetic needs to be established from the

start.

 Digital filter example 2.4

A common operation in digital processing is the digital filter. Figure 2-4 demonstrates

how an FIR filter could be represented in hardware, at register level. Each sample word

is clocked through the registers. Each sample from x to x-n (x being the input sample

and x-n being a previous input sample) are multiplied by a coefficient and accumulated

at the summing point (multiply-accumulate or ‘MAC’). The coefficients define the

specification of the filter whilst the amount of coefficient multipliers (aka ‘taps’) directly

determines the filter order. For an IIR filter, the diagram could be modified to include

delayed versions of the output are also added at the summing point.

Figure 2-4: Parallel FPGA FIR filter structure (Maxfield. C, 2006)

 Conclusion 2.5

The project requires an analogue to digital converter (ADC) and a digital to analogue

converter (DAC) with the FPGA being used in between to process the digitised audio

samples.

Pratik
Highlight

Mike Hudson

 9

The nature of an FPGA allows for straightforward implementation of many digital

processing structures that require only relatively small signal delay such as the one

illustrated in Figure 2-4. For larger delay values a dedicated RAM device will be

required.

The use of FPGA design allows the user to review the design at multiple levels of

abstraction for maximum learning potential and possibly a more intuitive design process.

The personal computer has always been the dominant platform for running audio

processing software on, mainly because of the standardised and well-established

hardware and operating systems. However, as embedded technology matures, audio

processing may be able to move away from the potentially unreliable standard computer

and move towards a form of dedicated, reconfigurable platform that can do, or ‘be’

anything you want it to.

Mike Hudson

 10

3 Approach

 General 3.1

The general approach to the project consisted of the following phases:

1. Literature review

2. Choosing the tools and software

3. Learning how to use the tools and software

4. Review of related data-sheets and manufacturer documentation

5. Creation of a basic audio in/out system

6. Creation of the basic building blocks of digital processing

7. Reviewing the theory of desired audio effects

8. Implementation of effects

9. Testing, results and conclusions

The research stage of the project consisted of:

• Review of previous work and current products

• Evaluation of available tools and software

• Reading theory of signal processing

• Reading/reviewing manufacture data sheets of selected tools

• Reinforcing my understanding/ trying out theory in Matlab Simulink

Once the FPGA development board was chosen the key aspect of making the project a

success was to get to develop a good working knowledge of the associated tools and

software.

 Selection of Tools and Software 3.2

The choice of tools and software was carefully considered. The main requirements for

the FPGA development board:

Mike Hudson

 11

• IO expansion

• On-board audio ADC/DAC

• LCD Display

• User input (switches)

• On-board RAM

• Well documented

The choice of the FPGA device was between the two main manufactures of FGPAs -

Xilinx and Altera. Rather than considering the specification of individual FPGA devices

for the suitability of this project, the features and specification of FPGA development

boards, as a whole, were reviewed. It was assumed that a relatively recent FPGA would

easily have enough logic elements to fulfil the aims of this project. It was decided that

good documentation and tutorial material and support from the manufacturer would be

vital to the success of this project. Both Xilinx and Altera provide free design software

and comprehensive guides and reference designs to get started.

The Altys Spartan-6 (Xilinx FPGA) and the Altera DE2 development board both met the

requirements for this project offering all relevant peripherals and features. However,

due to familiarity with the Altera Quartus II software package an Altera device was

preferred. The choice of development board was narrowed down to two similar boards

from Altera, the DE1 and the DE2 both based around a Cyclone II FPGA. Essentially,

the DE1 appears to be a slightly downgraded version of the DE2 in terms of on board

peripherals.

The Altera DE2 development board was chosen due to it meeting all requirements and

being readily available. However, if this was not the case, the DE1 board may have

been a more cost effective option at less than half the price of the DE2.

Mike Hudson

 12

4 The Altera DE2 development board

 Features 4.1

The DE2 development board is intended to target the educational market and offers a

wide range of features suitable for many different kinds of projects. Features that are of

interest to this project include:

• Altera Cyclone II 2C35 FPGA device with 33000 logic elements

• 512-Kbyte SRAM

• 8-Mbyte SDRAM

• 4 pushbutton switches

• 18 toggle switches

• 18 red user LEDs

• 9 green user LEDs

• 50-MHz oscillator and 27-MHz oscillator for clock sources

• 24-bit CD-quality audio CODEC with line-in, line-out, and microphone-in jacks

• Two 40-pin Expansion Headers with diode protection

Figure 4-1 gives an overview of the readily available peripherals on the DE2 board

Figure 4-1: The Altera DE2 inputs and outputs (Altera DE2 manual)

Mike Hudson

 13

The DE2 board features a Wolfson WM8781 24-bit sigma-delta audio ADC/DAC

designed for consumer audio applications. Throughout this report, the term ‘audio

codec’ will be used in reference to the Wolfson WM8781 – a single device that has an

ADC and DAC running off the same clock.

These features appear to satisfy the requirements of the project, established in section

2.5.

Mike Hudson

 14

5 Altera Quartus II

 Introduction 5.1

Altera Quartus II is the software used to create projects for analysis and synthesis of

HDL designs. It includes several tools and features to help with HDL design including:

• VHDL and Verilog HDL input

• Block schematic entry

• Pin assignment editor

• Programmer tool

• Megafunctions IP design blocks

• SOPC Builder

Projects can consist of a mixture of Verilog and VHDL hardware description language.

For this project, VHDL will be used for all HDL input due to familiarity with this

language. However, some pre-made design blocks such as the Audio and Video Core

used to configure the audio ADC will generate Verilog code. Altera Quartus II comes

with a range of building blocks of pre-made HDL design blocks referred to as IP core. It

is proposed that IP core be used in this project for realising trivial tasks and functions

such as configuration of peripherals which could be very time consuming to design and

test in HDL from scratch.

The free ‘web edition’ version of the Quartus II v11.0 software is used throughout this

project.

 SOPC Builder 5.2

The SOPC (System On Programmable Chip) builder is a development tool that comes

packaged with the Altera Quartus II software. SOPC builder has a library of common

components and intellectual property including memory controllers, interfaces and

peripherals. Components are to be chosen from the library and are automatically

connected through the Avalon bus interconnect fabric. Custom components can be

Mike Hudson

 15

made and saved to the library to be instantiated anywhere in the project. A SOPC

builder component is described by a .tcl file, which describes its properties and interface

behaviours as well as associated HDL and available signals on the Avalon bus. The

VHDL is generated from the SOPC builder and integrated into the project by connecting

it on the top level either in HDL or using a schematic file.

Mike Hudson

 16

6 Interfacing Audio to the audio to the FPGA

 The Wolfson WM8781 audio ADC 6.1

This section introduces the on-board audio codec and gives an overview of its

configuration and its various modes of operation.

The default mode of the codec is an internal signal loop-back, which connects the audio

input signal to the audio output. The codec features stereo line in and out as well as

mono microphone level audio input. Its features include:

• Standard sampling frequencies of 8, 32, 44.1, 48, 88.2 and 96kHz

• I2C serial control interface

• Four serial interface modes

• 16, 20, 24 and 32 bit word lengths

• Master or slave clocking modes

The codec will easily provide adequate functionality for this project in terms of audio

quality (sample rate and bit depth) and also interfacing requirements. The codec uses an

I2C bus for configuration which is a standard protocol for communication between

digital devices which reside on the same circuit board.

The Altera DE2 user manual provides full schematic diagrams of all its peripherals

connected to the FPGA.

Figure 6-1 shows how the WM8781 chip is physically connected to the FPGA and a

description of the signals are given in Table 6.1.

Mike Hudson

 17

Figure 6-1: Audio codec schematic (Altera DE2 User manual)

This allowed for a better understanding of how the codec device is interfaced to the

FPGA and which signals are available in the FPGA. For example, the lineout signals

from the codec have been omitted in the design of the DE2 and it can be seen from

Figure 6-1 that the headphone output is used instead. The figure also confirms that the

line in and line out are stereo (two channels) whilst the mic in is mono (one channel).

The former will be used for this project.

Table 6.1 shows the description of the signals in Figure 6-1.

Standard 3.5mm audio
jack sockets

I2C control from FPGA

Codec signals to/from
FPGA

Mike Hudson

 18

Signal name FPGA pin no. Description

AUD_ADCLRck PIN_C5 Audio CODEC ADC LR Clock

AUD_ADCDAT PIN_B5 Audio CODEC ADC Data

AUD_DACLRCK PIN_C6 Audio CODEC DAC LR Clock

AUD_DACDAT PIN_A4 Audio CODEC DAC Data

AUD_XCK PIN_A5 Audio CODEC Chip Clock

AUD_BCLK PIN_B4 Audio CODEC Bit-stream Clock

I2C_SCLK PIN_A6 I2C Data

I2C_SDAT PIN_B6 I2C Clock

Table 6.1: WM8781 pins (sourced from the DE2 manual)

 Configuration 6.2

The codec is configured via a serial I2C controller, which is automatically generated

when instantiating the ‘Audio and Video Config’ IP core in the SOPC Builder. A

number of different modes and options are available and are selected by writing to the

appropriate register on the codec and will be discussed in this section.

The digital audio data is interfaced to the FPGA through the digital serial audio

interface. Audio left and right data channels are multiplexed to form the serial stream of

data with reference to the bit clock and the channel clock (see Figure 6-2). The audio

interface mode describes how the serial audio data stream is framed relative to the bit

clock (named BCLK) and the DAC/ADC channel clock (named DACLRCK and

ADCLRCK respectively). The three available standards are:

• Left justified

• Right justified

• I2S (Inter-IC Sound Bus)

For the scope of this project, the choice of interface mode is not too critical since there

are no compatibility requirements for example, interfacing with other devices or

Mike Hudson

 19

software. However, left-justified mode was chosen due to it being word length

independent and therefore easily allowing the word length to be changed at a later point

if required. Figure 6-2 shows how the channel clock is used to frame the left and right

words on the serial bit stream with each bit being clocked on the falling edge of the bit

clock. When the channel clock goes high, the serial data contains the left channel data

with the MSB aligned to the left.

Figure 6-2: left justified format (WM8781 datasheet)

The WM8731 provides two independent channel clocks for DAC and the ADC, which

allows both to operate with different sampling frequencies. However, sampling

frequencies will be the same for the line-in and line-out for this project. Therefore the

same channel clock can be used for both the DAC and ADC. The channel clock

operates at sampling frequency (fs). The bit clock is derived from the sampling

frequency and the word length. For example, a sampling frequency of 48kHz and a

word length of 16 bits requires a minimum bit clock value of 2x16x48000 = 1.536MHz.

Timing for the bit clock and channel clock can either be obtained from the codec itself

(master mode) or provided externally (slave mode). Master mode was chosen to

configure the serial interface clocks as inputs to the FPGA as shown in Figure 6-3.

These clocks are used to convert the serial stream to left and right channel parallel words

for processing and then back to serial for the DAC.

WM8731 / WM8731L Production Data

w
PD, Rev 4.8, April 2009

 36

DIGITAL AUDIO INTERFACES

WM8731/L may be operated in either one of the 4 offered audio interface modes. These are:

• Right justified
• Left justified
• I2S
• DSP mode

All four of these modes are MSB first and operate with data 16 to 32 bits.

Note that 32 bit data is not supported in right justified mode.

The digital audio interface takes the data from the internal ADC digital filter and places it on the
ADCDAT output. ADCDAT is the formatted digital audio data stream output from the ADC digital
filters with left and right channels multiplexed together. ADCLRC is an alignment clock that controls
whether Left or Right channel data is present on the ADCDAT lines. ADCDAT and ADCLRC are
synchronous with the BCLK signal with each data bit transition signified by a BCLK high to low
transition. BCLK maybe an input or an output dependent on whether the device is in master or slave
mode. Refer to the MASTER/SLAVE OPERATION section

The digital audio interface also receives the digital audio data for the internal DAC digital filters on the
DACDAT input. DACDAT is the formatted digital audio data stream output to the DAC digital filters
with left and right channels multiplexed together. DACLRC is an alignment clock that controls
whether Left or Right channel data is present on DACDAT. DACDAT and DACLRC are synchronous
with the BCLK signal with each data bit transition signified by a BCLK high to low transition. DACDAT
is always an input. BCLK and DACLRC are either outputs or inputs depending whether the device is
in master or slave mode. Refer to the MASTER/SLAVE OPERATION section

There are four digital audio interface formats accommodated by the WM8731/L. These are shown in
the figures below. Refer to the Electrical Characteristic section for timing information.

Left Justified mode is where the MSB is available on the first rising edge of BCLK following a ADCLR
or DACLRC transition.

LEFT CHANNEL RIGHT CHANNEL

DACLRC/
ADCLRC

BCLK

DACDAT/
ADCDAT

1/fs

n321 n-2 n-1

LSBMSB

n321 n-2 n-1

LSBMSB

Figure 26 Left Justified Mode

I2S mode is where the MSB is available on the 2nd rising edge of BCLK following a DACLRC or
ADCLRC transition.

Mike Hudson

 20

Figure 6-3: Master mode (WM8731 datasheet)

6.2.1 Sampling frequency

The desired sampling frequency was chosen by providing the appropriate master clock

(MCLK) frequency to the codec. This provides a reference clock to which all audio data

processing is synchronised. The source of the master clock can either be from the

provided crystal oscillator or from an external clock (the FPGA). This master clock

provides a reference to which all audio data processing is synchronised. To be able to

control the sample rate by selecting the master clock frequency, the codec must be in

‘normal mode’ (as opposed to USB mode which can only use a 12MHz clock). From

the WM8731 datasheet, a master clock frequency of 12.288MHz is needed to obtain a

sampling frequency of 48kHz for the DAC and ADC. This was provided from the

FPGA by utilising the PLL mega-function in Altera Quartus and the DE2 50MHz crystal

as the reference.

6.2.2 Register map

Figure 6-4 shows the complete register map for WM8731 audio Codec as given in the

datasheet. There are eleven registers in total, each having nine bits per register (note:

there is a misprint in the datasheet where ‘R3’ is labelled as ‘R1’). Several different

features of the codec can be utilised through its I2C interface such as volume control and

different filtering options. These extra options will be left at their default values (as

given from the audio and video IP-core) since all that is needed is the digitised audio and

WM8731 / WM8731L Production Data

w
PD, Rev 4.8, April 2009

 40

MASTER AND SLAVE MODE OPERATION

The WM8731/L can be configured as either a master or slave mode device. As a master mode
device the WM8731/L controls sequencing of the data and clocks on the digital audio interface. As a
slave device the WM8731/L responds with data to the clocks it receives over the digital audio
interface. The mode is set with the MS bit of the control register as shown in Table 16.

REGISTER
ADDRESS

BIT LABEL DEFAULT DESCRIPTION

0000111
Digital Audio Interface
Format

6 MS 0 Master Slave Mode Control
1 = Enable Master Mode
0 = Enable Slave Mode

Table 16 Programming Master/Slave Modes

As a master mode device the WM8731/L controls the sequencing of data transfer (ADCDAT,
DACDAT) and output of clocks (BCLK, ADCLRC, DACLRC) over the digital audio interface. It uses
the timing generated from either its on-board crystal or the MCLK input as the reference for the clock
and data transitions. This is illustrated in Figure 31. ADCDAT is always an output from and DACDAT
is always an input to the WM8731/L independent of master or slave mode.

BCLK

ADCDAT

ADCLRC

DACDAT

DACLRC
WM8731
CODEC

DSP
ENCODER/
DECODER

Note: ADC and DAC can run at different rates

Figure 31 Master Mode

As a slave device the WM8731/L sequences the data transfer (ADCDAT, DACDAT) over the digital
audio interface in response to the external applied clocks (BCLK, ADCLRC, DACLRC). This is
illustrated in Figure 32.

BCLK

ADCDAT

ADCLRC

DACDAT

DACLRC
WM8731
CODEC

DSP
ENCODER/
DECODER

Note: The ADC and DAC can run at different rates

Figure 32 Slave Mode

Note that the WM8731/L relies on controlled phase relationships between audio interface BCLK,
DACLRC and the master MCLK or CLKOUT. To avoid any timing hazards, refer to the timing section
for detailed information.

Direction of clock
signals in master mode

Mike Hudson

 21

any further processing would be done on the FPGA itself. Table 6.2 shows the actual

values used to configure the codec.

Figure 6-4: WM8731 register map (WM8731 datasheet)

Register Description Binary value HEX value

R7 (7’h07) digital audio interface format 0100 0001 9‘h041

Table 6.2: WM8781 modified register values

Table 6.2 shows the modified bits in register seven (the highlighted row in Figure 6-4).

For example, bit six enables ‘master mode’ as described towards the end of section 6.2

(configuration).

 Serial/parallel conversion 6.3

The ADC (ADC_DAT) data comes into the FPGA as a channel multiplexed serial

stream, which needs to be de-serialised into N bit, sized words for the left and right

channel. A ‘SIPO’ (Serial In Parallel Out) and ‘PISO’ (parallel In Serial Out) entity was

created in VHDL and simulated using Altera Qsim to prove their functionality. Figure

6-7 and Figure 6-8 show the simulation waveforms of the parallel/serial converters.

WM8731 / WM8731L Production Data

w
PD, Rev 4.8, April 2009

49

The device can be powered off by writing to the POWEROFF bit of the Power Down register. In
POWEROFF mode the Control Interface and a small portion of the digital remain active. The
analogue VMID reference is disabled. As in STANDBY mode the crystal oscillator and/or CLKOUT
pin can be independently controlled. Refer to Table 28.

PO
W

ER
 O

FF

C
LK

O
U

TP
D

O
SC

PD

O
U

TP
D

D
A

C
PD

A
D

C
PD

M
IC

PD

LI
N

EI
N

PD

DESCRIPTION

1 0 0 X X X X X POWEROFF, but with Crystal
Oscillator OS and CLKOUT
available

1 1 0 X X X X X POWEROFF, but with Crystal
Oscillator OS available, CLKOUT
not-available

1 1 1 X X X X X POWEROFF, Crystal oscillator
and CLKOUT not-available.

Table 28 Poweroff Mode

REGISTER MAP
The complete register map is shown in Table 29. The detailed description can be found in Table 30
and in the relevant text of the device description. There are 11 registers with 16 bits per register (7 bit
address + 9 bits of data). These can be controlled using either the 2 wire or 3 wire MPU interface.

REGISTER BIT[8] BIT[7] BIT[6] BIT[5] BIT[4] BIT[3] BIT[2] BIT[1] BIT[0] DEFAULT
R0 (00h)
Left Line In

LRINBOTH LINMUTE 0 0 LINVOL[4:0] 0_1001_0111

R1 (01h)
Right Line In

RLINBOTH RINMUTE 0 0 RINVOL[4:0] 0_1001_0111

R2 (02h)
Left
Headphone Out

LRHPBOTH LZCEN LHPVOL[6:0] 0_0111_1001

R1 (01h)
Right
Headphone Out

RLHPBOTH RZCEN RHPVOL[6:0] 0_0111_1001

R4 (04h)
Analogue Audio
Path Control

0 SIDEATT[1:0] SIDETONE DACSEL BYPASS INSEL MUTEMIC MICBOOST 0_0000_1010

R5 (05h)
Digital Audio
Path Control

0 0 0 0 HPOR DACMU DEEMPH[1:0] ADCHPD 0_0000_1000

R6 (06h)
Power Down
Control

0 POWEROFF CLKOUTPD OSCPD OUTPD DACPD ADCPD MICPD LINEINPD 0_1001_1111

R7 (07h)
Digital Audio
Interface Format

0 BCLKINV MS LRSWAP LRP IWL[1:0] FORMAT[1:0] 0_1001_1111

R8 (08h)
Sampling
Control

0 CLKODIV2 CLKIDIV2 SR[3:0] BOSR USB/
NORMAL

0_0000_0000

R9 (09h)
Active Control

0 0 0 0 0 0 0 0 Active 0_0000_0000

R15 (0Fh)
Reset

RESET[8:0] not reset

Table 29 Register Map

Mike Hudson

 22

Another symbol block was created (Figure 6-5) from the serial and parallel converter

entities to create one simple parallel out/in interface.

Figure 6-5: Digital audio stream into the FPGA

Figure 6-6 shows the actual clock waveforms of the configured Codec using the

SignalTap logic analyser in Altera Quartus. To check the correct configuration of the

codec, the actual frequencies of the sample clock and bit clock were measured by

dividing 50MHZ (system clock) by the amount of system cycles for one period. For

example 50E6/1024 = 48.83kHz for actual sampling frequency and 50E6/16 =

3.125MHz for the bit clock. This is as expected however; the sampling frequency is

slightly more than 48kHz because the Codec master clock was provided with 12.5MHz

rather than 12.288MHz since this was the closest divisible value from the PLL using a

50MHz input.

Mike Hudson

 23

Figure 6-6: Codec
waveforms

Figure 6-7: Serial to
parallel

Figure 6-8: Parallel to
serial

Sa
m

pl
e

tim
e

20
.4

7u
s

48
.8

5k
H

z

Mike Hudson

 24

 Digital serial data stream 6.1

To test the correct configuration of the audio Codec, a simple audio in/out loopback was

created in VHDL.

DAC_DAT <= ADC_DAT;

An audio source was connected to the line-in which gave acceptable results when

monitored on the audio line-out. To confirm the audio data stream was coming into the

FPGA and not just looping back in the ADC, one channel was disconnected in the top

level Quartus block schematic file (Figure 6-5). This was re-compiled and loaded onto

the FPGA. Only the connected channel was audible on the line output, confirming the

digital data is being routed into the FPGA.

 Summary 6.2

At this point, the system can be illustrated by the block diagram in Figure 6-9. Once this

configuration was established and working correctly, the next stage was to implement

the digital effects to go in the ‘audio effects’ block. In terms of design, this is the first

major step completed.

Figure 6-9: Digital audio interfaced to the FPGA

parallel to
serial

serial to
parallel

I2C Configuration

Cyclone II FPGA

WM8781
ADC/DAC

audio
line
out

audio
line
in audio

effects
here

Pratik
Highlight

Mike Hudson

 25

7 Building a project library of Quartus block symbols

A project library of reusable blocks was built up throughout the length of this project,

starting with the basic building blocks as discussed in section 8.2.

 Multiply 7.1

A general purpose multiply function was implemented in VHDL and its symbol added to
the library. The multiplier was tested on an audio VU meter to ensure a maximum gain
of unity when the 7-bit gain control was at its full value of 127. Code extract 7-1 shows
the VHDL architecture for the multiply function.

1 begin
2
3 product <= a_in_reg * (("0") & g_val & ("11111111"));
4 y_out <= product(31) & product(29 downto 15);
5
6 -- sync a_in with system clock before multiplication
7 process (clk, reset)
8 begin
9 if (reset='0') then
10 a_in_reg <= (others => '0');
11 elsif rising_edge(clk) then
12 a_in_reg <= a_in;
13 end if;
14 end process;
15
16
17 end architecture beh;

Code extract 7-1

 Sum 7.2

The samples were converted to fractional form using the fixed package library (see line

1 & 2 of VHDL Code extract 7-2). This allowed for straightforward addition of two

sample values represented as logic vectors.

1 library IEEE_PROPOSED;
2 use IEEE_PROPOSED.FIXED_PKG.ALL;
3
4 begin
5 --convert to fractional form bits negative indexes

Mike Hudson

 26

6 a <= to_sfixed(a_in,0,-15);
7 b <= to_sfixed(b_in,0, -15);
8
9 y <= a + b;
10
11 y_out <= to_slv(y(0 downto -15)); --convert back to logic vector
12
13 end architecture;

Code extract 7-2

 Mixer 7.3

A mixer was implemented in from the previously designed multiply and sum blocks in

order to control the ratio of the original signal to the affected signal (Figure 7-1). Figure

7-2 shows the implemented mixer design as a reusable Quartus block symbol.

Figure 7-1: Dry/wet ratio control of affected and original signal

Invert
bits multiply

multiply

sum
Amount (ratio)

‘dry’ signal

‘wet’ signal

Mixed signal

Mike Hudson

 27

Figure 7-2: Wet/dry ratio block symbol in Quartus

 Small delay-line in hardware 7.4

For processing that just requires a sample delay of a few samples it was considered a

waste of resources to use a dedicated buffer. Instead, a hardware delay-line was created

in VHDL, which consists of a series of registers clocked by the sample frequency. The

simulation in Figure 7-3 shows the delayed outputs from the first four registers. Code

extract 7-3 shows how an array of clock registers were be created in VHDL using a ‘for’

loop.

1 type buffer_array is array(0 to 128) of std_logic_vector(15 downto 0);
2 signal tap: buffer_array;
3 begin
4 process(ch_clk) is
5 begin
6 if rising_edge(ch_clk) then
7 tap(0) <= ch1_in;
8 for i in 1 to 128 loop
9 tap(i) <= tap(i-1);
10 end loop;
11 end if;
12
13 end process;
14 ch1_out <= tap(0);
15 ch1_out_delay1 <= tap(1);
16 ch1_out_delay2 <= tap(2);
17 ch1_out_delay3 <= tap(3);
18 ch1_out_delay4 <= tap(4);

Code extract 7-3

Mike Hudson

 28

Figure 7-3: Delay-line simulation in Quartus simulator

 Summary 7.5

• Building up a custom library of components and instantiating them multiple

times in a hierarchical structure is a valuable aspect of system design

• Instantiating custom library components in a hierarchical structure is very useful

• The use of the fixed package for the ‘sum block’ may have not been the best

option since it cannot be readily synthesised for simulation and is not a standard

IEEE library. The standard logic signed package may have been a better option

• For the multiplication of a sample with an arbitrary value, the sample needs to be

synchronised to the system clock edge. This is not necessary when multiplying

with a fixed constant

• The FPGA logic elements get used up quickly when large hardware delay lines

are created. For delays of more than 100 or so samples the dedicated RAM will

be used

(n-1)
(n-2)

(n-3)
(n-4)

Mike Hudson

 29

8 Implementing a buffer in RAM

 Requirements 8.1

The requirements for the buffer are as follows:

• Must be able to seamlessly ‘wrap around’ to implement a circular buffer

• At least one second in length

• Must be able to have multiple read pointers

• The ability to modulate read pointer values in real time

• The ability to run multiple, independent circular buffers simultaneously

The buffer length only needs to be one or two seconds at the most. A reverb effect

typically requires less than 80ms delay whilst an echo would be anything between 80ms

up to a few seconds. A buffer of one second in length at a sampling rate of 48kHz at 16

bit for both left and right channels would require 192000 bytes (48000 * 32/8).

 Choice of RAM device 8.2

The DE2 has an 8MB SDRAM chip and a 512Kb SRAM chip. Both devices were

considered suitable for this project. The general advantages of the SRAM chip is that it

would usually be a lot easier to implement and also would inherently be faster than the

SDRAM. However, since the RAM was to be written to and read from through the

Avalon interface, the advantages were considered negligible.

 SDRAM controller Core 8.3

The SDRAM Controller core provides a byte-addressable interface to the external

SDRAM chip on the DE2 board and handles all protocol requirements. The control core

is instantiated from within SOPC builder and is connected into the Avalon bus as a

memory mapped slave device. Figure 8-1 illustrates how the RAM controller core

effectively sits between the Avalon memory mapped slave port and the RAM chip.

Mike Hudson

 30

Figure 8-1: SDRAM Controller with Avalon interface block diagram (Altera

Embedded Peripherals IP User Guide)

Figure 8-1 also shows two separate PLL generated clocks to drive the SDRAM chip and

the controller core. Due to the physical characteristics and PCB layout of the DE2 board

the SDRAM chip requires a phase shift of -3ns with reference to the system clock to

compensate for the clock lag. The -3ns applies to the DE2 board only and would

probably need to be altered for other boards or devices.

 Reading/writing to and from the SDRAM 8.4

In order to access the Avalon memory mapped slave port provided by the SDRAM

controller core, a memory mapped master component was created in SOPC builder. The

component wizard was used to create a custom (.TCL) component for use in SOPC

builder. An Avalon memory mapped interface was added to the component along with a

clock and reset. All necessary signals were added to the component to create the

interface to the RAM controller. These signals are given on the top level of the

generated SOPC system and will be used in a VHDL state machine to access the RAM.

See Figure 8-2.

Mike Hudson

 31

Figure 8-2: SOPC Builder custom component signals

The newly created component, named ‘sdrambuffer_0’ was then connected to the
SDRAM controller named ‘sdram_0’. See Figure 8-3.

Figure 8-3: Component connection to the SDRAM Controller in SOPC Builder

The SOPC system was generated as VHDL code and connected up in the top level of

Quartus. The top right of Figure 8-4 shows the signal connections to the external

SDRAM chip and the bottom left and right show the signals that will be connected to a

RAM state machine.

Figure 8-4: System top level connections in Quartus

Mike Hudson

 32

 RAM state machine 8.5

A state machine (Figure 8-6) was implemented in VHDL to write/read to and from the

Avalon memory mapped master component. The component editor gives an example of

the read and write waveforms (Figure 8-5). For example, to write to the SDRAM the

write signal is asserted and proceed with write when the ‘waitrequest’ signal is zero.

Figure 8-5: Read and write waveforms for Avalon memory mapped master

Figure 8-6: State Machine for a RAM Buffer

idle state write state read state read2 state

inc write
pointer

inc read
pointer(s)

Mike Hudson

 33

Source State Destination State Condition
idle write rising edge of sample clk
write read waitrequest = 0
read idle waitrequest = 0

Table 8.1: RAM state machine conditions

The left and right audio channels were combined into one 32 bit word defined as a logic

vector in VHDL. The read and writes to the RAM were done 32 bits at a time which

requires the write pointer to increment by 4 on every sample since every address

location the RAM contains a byte. This was initially tested with the read pointer lagging

one sample behind the write pointer. This is shown in the VHDL Code extract 8-1.

1 ------increase write pointer index------
2 if (inc_write_pntr = '1') then
3 write_pntr <= write_pntr + 4;
4 end if;
5
6
7 ------increase read pointer index--------
8 if (inc_read_pntr = '1') then
9 read_pntr <= read_pntr - 4;
10 end if;

Code extract 8-1

The code was synthesised and tested on the DE2 board with an audio source connected

to the input whilst the output was monitored through speakers. Results were successful

and audio could be heard on the line out. This test confirmed that the audio samples

were successfully writing to the SDRAM then being read out and sent through the codec

and to the line out port of the DE2. Figure 8-7 shows the RAM state machine as a block

symbol connected to the SOPC system. Now all that was required was to modify the

state machine to implement the function of a circular buffer.

Mike Hudson

 34

Figure 8-7: SDRAM state machine connected to SOPC System

 Implementation of a circular buffer 8.6

With the basic read and write functionality to the RAM working, the state machine was

modified to implement a circular buffer. Another ‘if statement’ was added to the

original code to check, on every increment, if the pointer had reached the size of the

buffer and if so then reset the pointer back to the beginning (defined as the

base_address). Code extract 8-2 shows the modified VHDL that implements this

functionality.

1 ------increase write pointer index
2 if (inc_write_pntr = '1') then
3 if(write_pntr = buff_size) then --wrap round
4 write_pntr <= base_address;
5 else
6 write_pntr <= write_pntr + 4; -- increase as normal
7 end if;
9 end if;

Code extract 8-2

This basic method of increasing the read and write pointers presented a few problems:

• White noise when resetting or powering up the DE2

• Periodic white noise when the read pointer lags by more than several

samples

• Moving the sample delay whilst it is running gives pops and crackles

Mike Hudson

 35

Every time the write pointer resets back to the base address, the read pointer cannot be

properly calculated (cannot be a minus number) from the write pointer and this

continues for the length of the specified lag time of the read pointer. This resulted in

white noise for the length of the samples between the write and read pointer at every

new cycle of the buffer. Figure 8-8 attempts to demonstrate this. The shaded area

illustrates the ‘dead zone’. This continues until the read pointer’s value is positive.

Figure 8-8: Problem with circular buffer

The problem was rectified by implementing some further logic in the form of ‘if

statements’ on every increase of the read pointer only. When a request to increase the

read pointer is made by the state machine, the code will test if the read pointer is more

than the write pointer. If true, this means the write pointer has reset (wrapped back

round) and so instead of obtaining the read pointer value from the usual subtraction, it is

increased by 4 until it reaches the end of the buffer where its value will then be

calculated as normal again. The other modification to the initial code was to wait until

the write pointer was ahead of the read pointer by the delay amount. This allowed the

read pointer delay value to be modulated by external means, which is necessary to

implement various audio effects such as phasing and chorus type effects. The extra if

statements in the code below eliminated these problems.

1 ------increase read pointer index--------
2 if (inc_read_pntr = '1') then --write pntr has reset
3 if (read_pntr > write_pntr) then
4 read_pntr <= read_pntr + 4;
5 if (read_pntr >= buff_size) then -- wrap round

write
pointer

sample delay

read
pointer

Base
addr

Mike Hudson

 36

6 read_pntr <= conv_std_logic_vector(base_addr, 32);
7 end if;
8
9 elsif (write_pntr >= (base_addr +sample delay) then
10 read_pntr <= (write_pntr - 4 *(sample_delay);
11 else
12 read_pntr <= write_pntr;
13 end if;

Code extract 8-3

 Multiple read pointers 8.7

Figure 8-9 illustrates how additional read pointers may be easily be added to the state

machine code. The location of the taps, relative to the write-pointer, can be changed

independently. Values of the taps are read out sequentially since a new state has to be

added to the state machine for every read pointer (tap).

Figure 8-9: Multiple read pointers in the RAM state machine

 Multiple buffer instances 8.8

Some audio effects (a reverb effect for example) may require multiple, independent

buffers and each with multiple taps. Using the Avalon bus for read and write operations

to and from the SDRAM makes it very easy to perform multiple, simultaneous read and

writes to the SDRAM. The custom Avalon memory mapped component (‘sdrambuffer’

previously created) can be instantiated multiple times and all can be connected up to the

same SDRAM controller in SOPC Builder (Figure 8-4). Each instance of the

idle state write state read state read2 state

inc write
pointer

inc read
pointer(s)

Mike Hudson

 37

‘sdrambuffer’ component has its own state machine writing and reading to its own

allocated section of memory using a different range of addresses.

Figure 8-10: Multiple SDRAM buffer components in SOPC Builder

As established in section 1.2, the length of the buffer needed to be a minimum of one

second. The buffer delay was to be controlled by a seven bit value whose maximum

value is 127. The resolution of the delay value was initially 10ms to obtain a maximum

buffer size of 1.27 seconds. This requires a buffer size of 245760 bytes (128 * 1920).

The VHDL code in Code extract 8-4 shows how the first buffer base address and size is

declared. The second buffer starts at one address location after the end of the previous

buffer

1 signal base_addr: integer:=0; -- base address of sdram

2 signal buff_size: integer:=245760 + base_addr ; --size of circular buffer

Code extract 8-4

 Summary 8.9

• Using the Avalon interface for multiple read and write to memory makes design

a lot more straightforward.

Mike Hudson

 38

• This may not be the best method of creating a variable delay. There is a

noticeable ‘zipping’ sound when the read pointer is varied by a considerable

amount. A better solution may be to interpolate between samples to create

smoother transition.

• Using IP (for example the SDRAM controller core) greatly speeds up the design

process.

Mike Hudson

 39

9 Echo effect

 Implementation 9.1

A delay effect was first realised using a buffer instance with a read pointer whose

distance from the read pointer determines the delay. The delayed signal was then mixed

with the original non-delayed version. See Figure 9-1

Figure 9-1: Variable delay

To create the echo effect, the delay was added into a feedback path and scaled by a

multiply block to create a decaying series of the delay (Figure 9-2).

Figure 9-2: Variable delay feedback

Mike Hudson

 40

Figure 9-3: Delay effect symbol on top level in Quartus

The final delay effect gives two independently controlled feedback delays. The first one

is as Figure 9-2 describes and the second has an adjustable filter in the feedback path,

which gives an interesting variation on the standard echo effect.

Mike Hudson

 41

10 Audio filter

Initially, the filter design and analysis tool (fdatool) in Matlab was experimented with.

The ‘fdatool’ provides a graphical interface for the design and analysis of digital filters

by setting desired specifications and then generating the HDL to use in the Quartus

project. A low-pass FIR filter was first generated and loaded to the DE2 board, which

proved successful. This would be appropriate for fixed-frequency filters but the aim was

to have a filter whose cut-off frequency could be varied in real-time. Other filtering

techniques were investigated.

 State variable filter 10.1

The state variable filter’s suitability has been proven in many audio applications (digital

and analogue) and was found to be the best solution for the following reasons:

• Low-pass, high-pass, band-pass and band reject signals are all available

simultaneously.

• Its tuning coefficients (frequency cut-off and damping factor) are independent of

one another allowing both values to be easily varied independently.

• Straight forward to implement.

Figure 10-1: State variable filter

highpass Bandpass Lowpass

f f

Q

Mike Hudson

 42

The outputs of the state variable filter are described by equation 16.1.

𝑦!"(𝑛) = 𝑓 𝑦!" 𝑛 + 𝑦!" (𝑛 − 1)

𝑦!"(𝑛) = 𝑓 𝑦!! 𝑛 + 𝑦!" (𝑛 − 1)

𝑦!" 𝑛 = 𝑥 𝑛 − 𝑦!! 𝑛 − 1 − 𝑄 𝑦!" (𝑛 − 1)

(16.1)

Where the fc coefficient determines the filter cut-off frequency and Q is the damping

factor (filter resonance).

𝑓 = 2 sin
𝜋 𝑓𝑐
𝑓𝑠

(16.2)

To prove equation 16.2 describes the relationship between the ‘f’ coefficient and the

filter cut-off frequency, a value of 500Hz was used (equation 16.3).

𝑓 = 2 sin 𝜋
 500
48000

(16.3)

Which gave a value of 0.0654 for the f coefficient.

A frequency response measurement was taken to prove the working of the filter with the

calculated frequency coefficient and the Q coefficient of 1.4. Figure 10-2 shows the

frequency response of the low pass filter when subject to white noise at the input and the

gain raised to 0db for easy interpretation of the plot. The spectrum plot also proves this

is a two pole 12dB/decade filter.

Mike Hudson

 43

Figure 10-2: Low pass filter on the DE2 (fc = 500hz)

 Discussion 10.2

The coefficients have to be carefully limited since it can easily become unstable as it

approaches high frequencies with a low damping factor. One other disadvantage to this

filter topology is that its stability limit is 1/6 of the sample frequency (when the tuning

coefficient f = 1). A limit of 8kHz in this case with a sampling frequency of 48kHz.

Despite these minor drawbacks and potential room for improvement, the overall sound

from the filter produced satisfying results.

Mike Hudson

 44

11 Flanger effect

The ‘flanger’ is a phasing effect and creates a ‘whooshing‘ sound by mixing the original

signal with a delayed version of itself. The whooshing sound results from the variable

delay length being modulated, usually by a low frequency sine wave. As the delay value

is varied, certain frequencies will become 180 degrees out of phase causing cancellation,

hence the reason why this effect is most prominent when both the delayed and original

signal are mixed at a 50%.

Variation of zero to about 30 sample delays in increments one seems to be sufficient for

this effect. The sample delay was provided by a hardware delay-line written in VHDL

code as discussed in section 7.4. Figure 11-1 shows the schematic drawn in Simulink.

Figure 11-1: Flanger diagram in Matlab Simulink

Figure 11-2 shows the actual spectrogram plot (frequency against time) of the recorded

flanger effect from the DE2. The frequency notches are a bit uneven because the

variable delay was modified manually rather than automatically with a sine wave since

some difficulty was had with creating a variable low frequency sine wave in VHDL.

One advantage of manually controlling the delay was that the notching effect could be

observed at each delay increment to get a better understanding of how the effect works.

Figure 11-3 shows the frequency response with the delay at an instantaneous value of 10

samples. As the delay is increased more notches get introduced and they shift along the

spectrum.

Mike Hudson

 45

Figure 11-2: Flanger effect on the DE2

Figure 11-3: Original signal mixed with a ten sample delayed version

This effect is used as the basis of many other audio effects such as the chorusing effect

and other extensions of phasing type effects.

Notches shift along the

Frequency response

Mike Hudson

 46

12 Reverberation effect

 A basic reverb 12.1

The basic idea of a reverb was first created using a variable delay with its signal fed

back to create a series of delays that fade out over time (feedback gain must be less than

one). Equation 17.1 shows how the gain parameter is calculated to control the amount

of feedback and to determine the amount of reverb reflections.

Figure 12-1 shows this structure (comb filter).

Figure 12-1: Comb filter

𝑔 = 0.001𝛕/𝐑𝐕𝐓

(17.1)

Where τ is the delay time in ms and RVT is the total reverb time of the comb filter.

Reverb time is defined as the time it takes for the output to fall to zero (-60dB) when an

impulse is applied.

This form of reverb was implemented on the DE2 board but did not give very

satisfactory results. The sounds seemed to resonate at the high frequencies and could

completely alter the tone depending on the delay. Further techniques were explored.

 The all-pass filter 12.2

The all-pass filter is effectively the same as the comb filter but with a feed-forward path

in addition to the feedback path (Figure 12-2). The all-pass filter has a flat frequency

response unlike the comb filter and allows for a frequency independent delay. Figure

12-3 shows how the all-pass filter was realised in practice- in Quartus as a block

Mike Hudson

 47

diagram. A new Quartus symbol containing the all-pass structure was created (Figure

12-4).

Figure 12-2: All-pass filter

The reverb equation (17.1) also applies to the all-pass filter

Figure 12-3: An all-pass filter in Simulink

Figure 12-4: All-pass filter in Quartus II

Mike Hudson

 48

The single all-pass filter was programmed to the DE2 to prove it was working correctly

and to hear its effect on audio. This did not sound like a reverb sound but more like a

‘flutter’ echo where individual delays could be heard. See Figure 12-7 for the impulse

response and spectrogram plot of the single all-pass filter (measured with the effect mix

at 50%).

12.2.1 Multiple all-pass filters

Three series all-pass filters were implemented in an attempt to create a denser sounding

reverb.

Figure 12-5: Multiple series all-pass reverb

Adding these extra all-pass filters made a significant difference to the reverb effect to

the point where the individual reflections were dense enough to not be individually

recognised by ear. This resulted in a smoother reverb sound as can be seen in the

spectrogram plots in section 12.3.

 Impulse response test 12.3

A test was devised in order to determine both the frequency and time characteristics of

the reverb effect. An impulse response was obtained using Apple’s impulse response

utility to apply a sweeping sine wave to the input and record (24bit 96kHz) the response

at the output. The output was then de-convolved to get a time domain impulse response,

which was exported as an audio .AIFF file. A short time Fourier transform (STFT) was

performed in Matlab on the audio AIFF file and plotted in order to view both time and

frequency information on one graph.

The Matlab code below was used to plot the spectrogram of the impulses:

AP1 AP2 AP3

Mike Hudson

 49

1 [ir,fs] = aiffread('impulse.aiff');
2 figure;
3 specgram(ir, 512, fs);
4 colorbar
5 title('Spectrogram')
6 xlabel('Time (Seconds)'); ylabel('Frequency x10^4 (Hz)');

Code extract 12-1

Figure 12-6 shows the applied sine wave sweep generated from Apple’s impulse

response utility.

Figure 12-6: Sine wave logarithmic sweep test signal

Mike Hudson

 50

Figure 12-7 shows the effect of one all-pass filter when subject to an impulse.

Figure 12-7: One all-pass filter 20ms delay time and 0.7 gain

Figure 12-8: Three series all-pass filters on the DE2 (setting one)

Mike Hudson

 51

Figure 12-9: Three series all-pass filters on the DE2 (setting two)

 Comparison with a commercial software reverb 12.4

As a matter of interest, the impulse response test was also done on a commercially

available software reverb. A comparison was made with results from the reverb effect

implemented on the DE2 and key differences were noted.

The ‘Averb’ reverb (Figure 12-10) was chosen due to its intuitive and straightforward

interface and parameters. This is one of the standard effects that comes packaged with

the Apple Logic Pro software and is quite highly regarded as far as digital software

effects are concerned. There are six different reverb plugins that come packaged with

Logic and all are different in terms of their sound, parameters and versatility.

Impulse responses were obtained for three different settings on the Averb reverb. See

Table 12.1 for the different settings.

Mike Hudson

 52

Figure 12-10: Averb reverb in Logic Pro

Averb Setting one Setting two

Pre-delay 20ms 20ms

Reflectivity 30% 90%

Room size 50% 150%

Density 50% 50%

Mix/wet 50% 50%

Table 12.1: Three different settings in Logic’s Averb reverb plugin

Figure 12-11 and Figure 12-12 show the response from the Averb reverb with

setting one and two respectively.

Mike Hudson

 53

Figure 12-11: Averb setting one

Figure 12-12: Averb setting two

Mike Hudson

 54

Key differences of the DE2 all-pass reverb and Logic’s Averb reverb:

• The DE2 reverb reflections appear to be very periodic compared to the Averb

• The DE2 reverb has a more uniform frequency response

• The response of the Averb appears to be a lot more dense at low frequencies

• Large ‘reverb tails’ can be created with the Averb

• The sound of the Averb is far superior to the DE2 reverb in terms of simulating a

real acoustic space

• The DE2 reverb has no pre-delay

 Summary 12.5

It is difficult to make a good comparison between the Averb and the all-pass reverb

implemented on the DE2 because the Averb is parameterised. Also, the performance of

the reverb cannot be evaluated from plots and data alone: it needs to be listened to. This

creates the need for a lot of experimentation and time to obtain the desired affect. It is

also worth noting that on the spectrogram plots of the Averb, there appears to be a large

pre-delay. Whilst some of this delay may be due to the nature of the reverb, a small

amount is probably due to latency, which was not taken into account at the time of

testing.

Due to time constraints on this project, the work on the reverb effect was cut a little

short and the ‘three all-pass’ structure shown in Figure 12-5 was used for the reverb in

this project. It was the intention that various different reverb structures be implemented,

tested and compared and the best one chosen for this project.

Possible improvements to the reverb may include:

• Using nested all-pass filters

• Simulating pre-delay

• Parallel comb filters to create early reflections

Mike Hudson

 55

• Using a low pass filter to create frequency damping effects

• Ensuring all delay values are mutually co-prime

• Proper parameterisation with relation to a physical space

Mike Hudson

 56

13 Latency test

 Comparison with computer software 13.1

A simple test was carried out to determine the latency of a series effect chain on the DE2

board. The same test was then carried out on a computer (running Apples OS X

operating system) with an equivalent series effect chain (Figure 13-1) within Logic Pro 9

(a commercially available digital audio workstation). The standard built in ‘CoreAudio’

driver and built in soundcard were used which is supposedly prepared to run low

latencies. Figure 13-1 shows the series effect chain and Figure 13-2 illustrates how the

equipment was setup to measure the system latency. The delayed signal goes into ‘ch1’

and ‘ch2’ is the direct signal. The system latency is the difference between the two.

Figure 13-1: Series effect chain

Figure 13-2: Latency test setup

Due to lack of immediately available resources and time, the oscilloscope was replaced

with a computer running audio recording software setup to record a stereo input for

system under
test

audio source oscilliscope

ch1

ch2

echo flanger filter reverb

Audio
in

Audio
out

ADC

DAC

Mike Hudson

 57

channels one and two. A microphone was used for the audio source and was tapped to

create a transient. This meant the test was not of good enough quality to determine the

exact latency value since the waveform editor scale was not small enough but it is

acceptable for a rough visual comparison. The distance between the two markers in

Figure 13-3 and

Figure 13-4 is 10ms.

Figure 13-3: DE2 total system latency at 48kHz

Figure 13-4: Logic Pro total system latency at 48khz

 Summary 13.2

This test demonstrates the potential advantages of an FPGA for a low latency solution to

digital audio signal processing due to the parallel nature of its operation.

The following observations were made:

< 1ms

> 10ms

Mike Hudson

 58

• A considerable amount of latency is introduced for every effect added to the

chain on the computer software

• The audio latency on the computer software would most likely be unsuitable for

real time processing. Especially for instruments and vocals where latency would

be most noticeable.

• Audio latency on the DE2 is negligible and would be unnoticed

• Total latency for the DE2 board will always be less than the time of one audio

sample even when more effects are added.

It was noted that this was a rather crude method for testing latency. Possible

improvements to this test would be:

• Use a signal generator impulse for a consistent audio source

• Use a dual channel storage oscilloscope with configured axis for more accurate

readings

• Could test both systems first with no effects then with effects to make a

comparison and to determine the minimum system delay

Mike Hudson

 59

14 User Interface

 Considerations 14.1

The aim of the user interface was to:

• Provide visual feedback of various parameters

• Simultaneously vary different parameters

• Aid in testing

• Make the project ‘useable’

Three methods of user input were considered:

• Switches (on the DE2 board)

• Keys (on the DE2 board)

• Quadrature rotary encoders

The DE2 board has 17 switches, which could be used to represent binary values for the

various effect parameters. This was not considered a very user-friendly method of input.

Rotary encoders were used because of their versatility and intuitive nature (turn

clockwise to increase value). Quadrature encoders also have many other advantages

such as:

• Resolution can be altered

• Ease of control over minimum and maximum values

• Do not have absolute values (as opposed to resistive potentiometers) therefore

allowing one encoder to alter multiple values

• One encoder only uses 2 digital inputs on the FPGA

• Velocity can be detected to alter the value rate of change

Mike Hudson

 60

 Quadrature rotary encoder 14.2

A quadrature rotary encoder outputs two pulses (when turned), 90 degrees out of phase

with each other. The direction of the decoder can be determined by testing if one of the

channels is high or low at the falling or rising transition of the other channel. Four

possible states are available in one channel cycle and the associated variable is

incremented or decremented by one. Figure 14-1 shows how the outputs of the encoder

are used to determine direction.

Figure 14-1: Quadrature encoder outputs

The encoders were interfaced using the DE2 boards general purpose (GPIO) ports each

consisting of 32 available bidirectional pins (Figure 14-2).

Figure 14-2: Quadrature encoder connections to the DE2 GPIO header

The code to read each encoder was written in a VHDL process. The pseudo code for

one state of the encoder is shown in Code extract 14-1.

Quadrature
encoder

Mike Hudson

 61

1 if (A is rising) then --
2 if (B='0' and count /= 127) then -- increase value
3 count <= count + 1;
4 elsif (B='1' and count /= 0) then -- decrease value
5 count <= count - 1;
6 end if;
7 end if;

Code extract 14-1

This VHDL code was repeated for the other three conditions:- B rising, A falling, B

falling.

Figure 14-3 shows the functional Quartus simulation for a clockwise motion of the

encoder.

Figure 14-3: Simulation of quadrature encoder VHDL code

A box containing 8 rotary encoders was constructed (Figure 14-4) and connected to the

general purpose inputs on the DE2 via a 40pin ribbon cable. Figure 14-5 shows the

completed ‘control box’.

Figure 14-4: Construction of the rotary

control box

Figure 14-5: Eight rotary controls and

10 LEDS

Encoder in
forward direction

Increase in value

Mike Hudson

 62

The problem with the functional simulation of the VHDL code for the rotary encoder is

that it does not account for any switch bounce. The VHDL process was clocked at

50MHz and when it came to physically testing the encoder its behaviour was very erratic

indicating the need to implement some form of de-bounce mechanism within the code.

After some experimentation, the problem was resolved by clocking the VHDL process

with a slower clock frequency of 48kHz.

 Interfacing the controls 14.3

The ‘controlbox’ VHDL entity (Figure 14-6) provides the eight seven bit values from

the encoders. These values were initially connected directly to the parameters to control.

However, with four effects, eight controls were not enough and so an ‘effect selection’

feature was devised. The switches on the DE2 board were used to select which effect

the control values were connected to.

Figure 14-6: All eight encoder connected on the top level in Quartus

 Visual feedback 14.4

The two immediate methods of display on the DE2 board were considered:

• The VGA display output

• The on-board 16x2 LCD display

Mike Hudson

 63

Both display methods were not perfectly suitable: the LCD was too small and a VGA

monitor would probably be too big. However, the chosen method of display was the on-

board LCD display since a VGA monitor was not always available.

In order to easily write to the LCD, a NIOS II processor was included in the system.

This allows the use of the familiar ‘printf’ function to be used in the C language.

The final work provides the user with visual feedback using the LCD to display the

selected effect and how its parameters are mapped to the controller. Values can be

represented in a bar format or binary format using the 10 LEDs on the control box. The

LEDs display whichever value was altered last - dynamically displaying values. For

example, to view the value of a parameter, a slight nudge of the encoder will display its

associated value.

The eight switches on the DE2 board, used to select an audio effect, are fed into the

SOPC system on the top level to enable their values to be available on the Avalon bus

and read in a NIOS II program. The NIOS program gives a different display depending

on the status of the switches. The display shows what parameters are currently mapped

to which rotary encoder whose values are dynamically mapped depending on which

effect is selected. See Figure 14-7 and Figure 14-8.

Figure 14-7: LCD when no effect has been selected

Mike Hudson

 64

Figure 14-8: Reverb effect selected- placement of text corresponds to a rotary

encoder

 Discussion and summary 14.5

The performance of the rotary encoders is still not entirely satisfactory since they have

no de-bounce mechanism in place. An improvement would be to use some de-bounce

circuitry, possibly in the form of a capacitor filter circuit in the rotary control box.

Nios II was not entirely necessary for project work up to this point since it was only used

to provide ease of writing to the LCD. The intention is that a more elaborate user

interface will be implemented in the future which will be driven by the NIOS processor.

Mike Hudson

 65

15 Conclusion

The completed project has fulfilled all of the initial aims and objectives. Effective time

management along with the excellent teaching resources from Altera have played a large

part in making the project a success.

A library of basic building blocks was established and utilised to implement all four of

the proposed audio effects: echo, flanger, filtering and reverberation.

The total latency of the FPGA was under 1ms where as an equivalent setup on a

personal computer running audio processing software had a typical latency of 10ms.

Comparisons showed that the latency of the FPGA audio processor remains relatively

constant when more audio effects are added whereas the computer software adds a

considerable amount of delay for every audio effect in the chain. This demonstrates the

benefits of using an FPGA for a low latency solution to audio processing.

The design of the project demonstrates how a library of VHDL entities can be built up to

form the basic building blocks of digital processing. Instantiating these blocks in

Quartus schematic editor proved to be a very intuitive method of designing such

systems, allowing for multiple levels of abstraction. The SOPC Builder also proved to

be a valuable tool for the system design and allowed ease of interconnection between

components and intellectual property.

 Further work 15.1

A considerable amount of time was spent creating the basic audio in/out system.

Therefore this work could be valuable to any other work concerned with utilisation of

the audio codec on the Altera DE2 board.

There are many possibilities to extend the work carried out for this project such as:

• Improvements of the user interface and parameterisation of audio effects,

possibly using a NIOS processor

Mike Hudson

 66

• To further demonstrate the major advantage of hardware: true parallel processing

• More elaborate and demanding audio effects

• High quality audio. For example, 24 bit at 96kHz

Mike Hudson

 67

16 References

A.R.M. Khan, A.P. Thakare, S.M. Gulhane. (2010). FPGA-Based Design of Controller

for Sound Fetching Codec Using Altera DE2 Board.International Journal of Scientific 7

Engineering Research. 1 (.), ..

Altera. (.). Euphonix chooses Altera Cyclone FPGAs. Available:

http://www.prnewswire.com/news-releases/euphonix-chooses-alteras-cyclone-fpgas-

and-nios-ii-processor-for-audio-mixing-console-product-line-74981927.html. Last

accessed January 2012.

Altera. (2006). DE2 User Manual. Available:

ftp://ftp.altera.com/up/pub/Webdocs/DE2_UserManual.pdf. Last accessed January 2012

Altera. (2011). Audio/Video Configuration Core. Available:

ftp://ftp.altera.com/up/pub/Altera_Material/11.0/University_Program_IP_Cores/Audio_

Video/Audio_and_Video_Config.pdf

Altera. (2011). Clock Signals for Altera DE-Series Boards. Available:

ftp://ftp.altera.com/up/pub/Altera_Material/11.0/University_Program_IP_Cores/Altera_

UP_Clocks.pdf.

Altera. (2011). Introduction to the Altera Nios II Soft Processor. Available:

ftp://ftp.altera.com/up/pub/Altera_Material/11.0/Tutorials/Nios2_introduction.pdf

Altera. (2011). SignalTap II with VHDL Designs. Available:

ftp://ftp.altera.com/up/pub/Altera_Material/11.0/Tutorials/VHDL/SignalTap.pdf

Altera. (2012). Introduction to SOPC Builder. Available:

ftp://ftp.altera.com/up/pub/Altera_Material/11.0/Tutorials/VHDL/Introduction_to_the_A

ltera_SOPC_Builder.pdf.

David Katz & Rick Gentile. A Source of Information. In: Clive Maxfield (2009). FPGAs
World Class Designs. Oxford: Elsevier. Ch.8.

Mike Hudson

 68

R.C. Cofer & Ben Harding. A Source of Information. In: Clive Maxfield (2009). FPGAs
World Class Designs. Oxford: Elsevier. Ch.7.

Tomasz Kaczmarczyk, Tomasz Henisz, Dominik Stozek. (2010). DGN-1 Digital Guitar

Effects Processor. Available: http://dgn.teamovercrest.org/. Last accessed January 2012

Udo Zolzer. Ed., (2002). DAFX. Chichester: John Wiley & Sons
Volnei A. Pedroni., (2010). Circuit Design and Simulation with VHDL. Cambridge,
Massachusetts: MIT Press

Mike Hudson

 69

17 Appendices

 Quartus II screenshots 17.1

Audio
effects

SOPC
system

Interface
controls

Mike Hudson

 70

 Project photographs 17.2

Figure 17-1: Control box

Figure 17-2: Control input via GPIO on DE2 board

Mike Hudson

 71

Figure 17-3: Testing the audio effects

Figure 17-4: Apple’s impulse response utility and the Logic Pro computer software

